Impact of gut microbiota on the central nervous system relevance in neurodegenerative and psychiatric diseases
DOI:
https://doi.org/10.12923/2353-8627/2024-0022Keywords:
metabolic syndrome, mental illness, neurodegenerative diseases, gut microbiome, metabolic microbiomeAbstract
Introduction: The gut microbiota plays an important role in regulating the function of the gut-brain axis. Incorrect dietary habits promote the development of metabolic syndrome, which negatively affects the biodiversity of the microbiome. The aim of the study was to determine the influence of the gut microbiota on the function of the gut-brain axis and the development of mental and neurodegenerative diseases.
Material and methods: A review of available literature was performed by searching the official databases PubMed and Google Scholar using the following keywords: metabolic syndrome, gut microbiome, metabolic microbiome, mental illness, neurodegenerative diseases with reference to original papers, meta-analyses and reviews in Polish, Ukrainian and English published in scientific journals and articles.
Results: Studies evaluating the role of gut microbiota in the pathogenesis of psychiatric and neurodegenerative diseases show promising results, suggesting that gut microbiota influences brain function by modulating the gut-brain axis, the immune system, and neurotransmitter production. Despite the growing evidence implicating microbiota in the development of diseases such as depression, schizophrenia, Alzheimer's disease, and Parkinson's disease, study results often remain inconsistent, which may be due to methodological differences, heterogeneity of study populations, and sample size limitations.
Conclusions: Further research on the influence of gut microbiota on the development of psychiatric and neurodegenerative diseases may contribute to a better understanding of the pathophysiology of these disorders and the discovery of new strategies for their treatment and prevention. Further research in this direction is needed to better understand the influence of gut microbiota on psychiatric and neurodegenerative disorders.
Abbreviations: International Diabetes Federation (IDF), short-chain fatty acids (SCFA), peptide YY (PYY), glucagon-like peptide-1 agonist (GLP-1), adenosine triphosphate (ATP), blood-brain barrier (BBB), central nervous system (CNS), Alzheimer's disease (AD), pathogen-associated molecular patterns (PAMPs), Toll-like receptors (TLRs), autism spectrum disorder (ASD), social anxiety disorder (SAD), bipolar disorder (BD), Young's Mania Rating Scale (YMRS), World Health Organization (WHO), Parkinson’s disease (PD), attention deficit hyperactivity disorder (ADHD)
References
1. Vplyv mikrobioty na stan orhanizmu ludyny. Bobyak YU. Mandziy L. Yastrebova O. Medicine actual problems in education and introduction of new technologies. 204-207.
2. Iliev, Iliyan D., and Ken Cadwell. "Effects of intestinal fungi and viruses on immune responses and inflammatory bowel diseases." Gastroenterology 160.4 (2021): 1050-1066.
3. Krawczyk, Krzysztof. "Archeony halofilne jako stymulatory komórek układu odpornościowego człowieka." (2023).
4. Cryan JF, O’Riordan KJ, Cowan CS, et al. The microbiotagut-brain axis. Physiol Rev. 2019;99:1877-2013.
5. Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011;23(3):187-192.
6. Heitzman, Janusz. Stres w etiologii przestępstw agresywnych. Kraków: Wydawnictwo Uniwersytetu Jagiellońskiego, 2002.
7. Kaur, Harrisham, Chandrani Bose, and Sharmila S. Mande. "Tryptophan metabolism by gut microbiome and gut-brainaxis: an in silico analysis." Frontiers in neuroscience 13 (2019): 493713.
8. Guo, Cen, et al. "Gut-brain axis: Focus on gut metabolites shortchain fatty acids." World journal of clinical cases 10.6 (2022): 1754.
9. Peirce, Jason M., and Karina Alviña. "The role of inflammation and the gut microbiome in depression and anxiety." Journal of neuroscience research 97.10 (2019): 1223-1241.
10. Zacharias, Helena U., et al. "Microbiome and metabolome insights into the role of the gastrointestinal – brain axis in Parkinson’s and Alzheimer’s disease: Unveiling potential therapeutic targets." Metabolites 12.12 (2022): 1222.
11. Pulikkan, Joby, Agnisrota Mazumder, and Tony Grace. "Role of the gut microbiome in autism spectrum disorders." Reviews on biomarker studies in psychiatric and neurodegenerative disorders (2019): 253-269.
12. Checa-Ros, Ana, et al. "Current evidence on the role of the gut microbiome in ADHD pathophysiology and therapeutic implications." Nutrients 13.1 (2021): 249.
13. Kelly, John R., et al. "The role of the gut microbiome in the development of schizophrenia." Schizophrenia Research 234 (2021): 4-23.
14. Tessmer, Kimberly. Leczenie odżywianiem. Zdrowe jelita. Wydawnictwo Kobiece, 2022.
15. Dobrowolski P., Prejbisz A., Kuryłowicz A. i wsp Metabolic syndrome — a new definition and management guidelines; Arterial Hypertension 2022;26(3):99-121.
16. Cavali, M. D. L. R., Escrivão, M. A. M. S., Brasileiro, R. S., & Taddei, J. A. D. A. C. (2010). Metabolic syndrome: comparison of diagnosis criteria. Jornal de Pediatria, 86, 325-330.
17. Freeman AM, Acevedo LA, Pennings N. Insulin Resistance. 2023 Aug 17. Treasure Island (FL): StatPearls Publishing; 2024 Jan. PMID: 29939616.]
18. Castro-Barquero S, Ruiz-León AM, Sierra-Pérez M, Estruch R, Casas R. Dietary Strategies for Metabolic Syndrome: A Comprehensive Review. Nutrients. 2020 Sep 29;12(10):2983.
19. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59-65.
20. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al. (2011). Enterotypes of the human gut microbiome. Nature 473, 174-180. doi: 10.1038/nature09944
21. Dahl, Wendy J., Daniela Rivero Mendoza, and Jason M. Lambert. "Diet, nutrients and the microbiome." Progress in molecular biology and translational science 171 (2020): 237-263.
22. Laiola M, De Filippis F, Vitaglione P, Ercolini D. A Mediterranean Diet Intervention Reduces the Levels of Salivary Periodontopathogenic Bacteria in Overweight and Obese Subjects. Appl Environ Microbiol. 2020 Jun 2;86(12):e00777-20.
23. Korpela K, Salonen A, Vepsäläinen O, Suomalainen M, Kolmeder C, Varjosalo M, Miettinen S, Kukkonen K, Savilahti E, Kuitunen M, de Vos WM. Probiotic supplementation restores normal microbiota composition and function in antibiotic-treated and in caesarean-born infants. Microbiome. 2018 Oct 16;6(1):182.
24. Portune, Kevin J., et al. "Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin." Trends in Food Science & Technology 57 (2016): 213-232.
25. Morowitz M.J., Carlisle E.M., Alverdy J.C.: Contributions of intestinal bacteria to nutrition and metabolism in the critically ill. Surgical Clinics of North America, 2011, 91: 771-785.
26. J. Oziom, S. Budrewicz Rola mikrobioty jelitowej w patogenezie i przebiegu wybranych schorzeń układu nerwowego; Polski Przegląd Neurologiczny 2019; 15 (1), 1-11.
27. Cullen JMA, Shahzad S, Dhillon J. A systematic review on the effects of exercise on gut microbial diversity, taxonomic composition, and microbial metabolites: identifying research gaps and future directions. Front Physiol. 2023 Dec 19;14:1292673.
28. Strasser B. Physical activity in obesity and metabolic syndrome. Ann N Y Acad Sci. 2013 Apr;1281(1):141-59.
29. Ley R.E., Bäckhed F., Turnbaugh P. i in. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci., 2005; 102: 11070-11075
30. Schwiertz A. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010; 18: 190−195.
31. Ley RE, Turnbaugh PJ, Klein S. i in. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444(7122):1022-1023.
32. Scheiman J, Luber JM, Chavkin TA, et al. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019;25:1104-1109.
33. Kostic AD. Reply to “Is physical performance (in mice) increased by Veillonella atypica or decreased by Lactobacillus bulgaricus?” J Sport Health Sci. 2020;9:201-202.
34. Ng SKC, Hamilton IR. Lactate metabolism by Veillonella parvula. J Bacteriol. 1971;105:999-1005.
35. Bielik V, Hric I, Hammami R. Is Veillonella a unique marker of physical exercise? Commentary on: "Is physical performance (in mice) increased by Veillonella atypica or decreased by Lactobacillus bulgaricus?". J Sport Health Sci. 2024 Sep;13(5):682-684.
36. Borre YE, O’Keeffe GW, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. 2014; 20(9): 509-518.
37. Biagi F, Nylund F, Candela M, Ostan R, Bucci L, Pini E i wsp. Through ageing and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE 2010; 5(5): e10667.
38. O’Toole PW, Claesson MJ. Gut microbiota: Changes throughout the lifespan from infancy to elderly. Int. Dairy J. 2010; 20(4): 281-291.
39. Gulas E, Wysiadecki G, Strzelecki D, Gawlik-Kotelnicka O, Polguj M. Can microbiology affect psychiatry? A link between gut microbiota and psychiatric disorders. Psychiatria Polska. 2018;52(6):1023-1039.
40. Quigley EMM. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases. Curr Neurol Neurosci Rep. 2017 Oct 17;17(12):94.
41. Zhao Y, Lukiw WJ. Microbiome-generated amyloid and potential impact on amyloidogenesis in Alzheimer's disease (AD). J Nat Sci. 2015 Jul;1(7):e138.
42. Sochocka M, Donskow-Łysoniewska K, Diniz BS, Kurpas D, Brzozowska E, Leszek J. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer's Disease-a Critical Review. Mol Neurobiol. 2019 Mar;56(3):1841-1851.
43. Zhu F, Li C, Chu F, Tian X, Zhu J. Target Dysbiosis of Gut Microbes as a Future Therapeutic Manipulation in Alzheimer's Disease. Front Aging Neurosci. 2020 Oct 6;12:544235.
44. Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O'Connor M, Harnedy N, O'Connor K, Henry C, O'Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O'Toole PW. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011 Mar 15;108 Suppl 1(Suppl 1):4586-91.
45. Piekarczyk, N., Ruciński, J., Kurowska, E., & i Człowieka, K. F. Z. (2021). The impact of the microbiome on the development of the operating system and its functioning. Research and Development of Young Scientists in Poland, 75.
46. Finegold SM, Molitoris D, Song Y, Liu C, Vaisanen ML, Bolte E i wsp. Gastrointestinal microflora studies in late-onset autism. Clin. Infect. Dis. 2002; 35(Suppl. 1): S6-S16.
47. Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorder. J. Med. Microbiol. 2005; 54(pt10): 987-991.
48. Kotlińska, Huras The sources and function of microbiota in breast milk. A review of literature, Zdrowie Publiczne i Zarządzanie, 2017, s. 178-180.
49. Aldegheri, Luana, et al. "Impact of Human Milk Oligosaccharides and Probiotics on Gut Microbiome and Mood in Autism: A Case Report." Microorganisms 12.8 (2024): 1625.
50. Sullivan E.L., Nousen L., Chamlou K. (2014), Maternal high fat diet consumption during the perinatal period programs offspring behavior, Physiol Behav, 123 (17): 236-42.
51. Madore C., Leyrolle Q., Lacabanne C., Benmamar-Badel A., Joffre C., Nadjar A. (2016), Neuroinflammation in autism: plausible role of maternal inflammation, dietary omega 3, and microbiota, Neural Plast. 359, 7: 209.
52. Schmidt R.J., Hansen R.L., Hartiala J., Allayee H., Schmidt L.C., Tancredi D.J. (2011), Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism, Epidemiology, 22 (4): 476-85.
53. Collado M.C., Cernada M., Bauerl C., Vento M., Perez-Martinez G. (2012), Microbial ecology and host-microbiota interactions during early life stages, Gut Microbes, 3 (4): 352-65.
54. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microbiol. 2004; 70(11): 6459-6465.
55. Kahathuduwa CN, West BD, Blume J, Dharavath N, MoustaidMoussa N, Mastergeorge A. The risk of overweight and obesity in children with autism spectrum disorders: a systematic review and meta-analysis. Obes Rev. 2019;20(12):1667-1679.
56. Shinawi M, Sahoo T, Maranda B, et al. 11p14.1 microdeletions associated with ADHD, autism, developmental delay, and obesity. Am J Med Genet A. 2011;155A(6):1272-1280.
57. Dhanasekara CS, Ancona D, Cortes L, et al. Association Between Autism Spectrum Disorders and Cardiometabolic Diseases: A Systematic Review and Meta-analysis. JAMA Pediatr. 2023;177(3):248-257.
58. Hack M, Taylor HG, Schluchter M, Andreias L, Drotar D, Klein N. Behavioral outcomes of extremely low birth weight children at age 8 years. J Dev Behav Pediatr. 2009;30(2):122-130.
59. Vancampfort D, Correll CU, Wampers M, Sienaert P, Mitchell A, De Herdt A, et al. Metabolic syndrome and metabolic abnormalities in patients with major depressive disorder: a meta-analysis of prevalences and moderating variables. Psychological medicine. 2014;44(10):2017-28.
60. Gheshlagh RG, Parizad N, Sayehmiri K. The relationship between depression and metabolic syndrome: systematic review and meta-analysis study. Iranian Red Crescent Medical Journal. 2016;18(6):1-6.
61. DiMatteo MR, Lepper HS, Croghan TW. Depression is a risk factor for noncompliance with medical treatment: meta-analysis of the effects of anxiety and depression on patient adherence. Arch Intern Med. 2000;160(14):2101-7.
62. van Reedt Dortland AK, Giltay EJ, Van Veen T, Zitman FG, Penninx BW. Metabolic syndrome abnormalities are associated with severity of anxiety and depression and with tricyclic antidepressant use. Acta Psychiatr Scand. 2010;122(1):30-9.
63. Dunbar JA, Reddy P, Davis-Lameloise N, Philpot B, Laatikainen T, Kilkkinen A, et al. Depression: an important comorbidity with metabolic syndrome in a general population. Diabetes Care. 2008;31(12):2368-73.
64. Le Port A, Gueguen A, Kesse-Guyot E, Melchior M, Lemogne C, Nabi H, et al. Association between dietary patterns and depressive symptoms over time: a 10-year follow-up study of the GAZEL cohort. PloS one. 2012;7:12.
65. Critchfield JW, Hemert van S, Ash M, Mulder L, Ashwood P. The potential role of probiotics in the management of childhood autism spectrum disorders. Gastroenterol. Res. Pract. 2011; 2011: 161358. 92.
66. Dash S, Clarke G, Berk M, Jacka FN. The gut microbiome and diet in psychiatry: Focus on depression. Curr. Opin. Psych. 2015; 28(1): 1-6.
67. Rao AV, Bested AC, Beaulne TM, Katzman MA, Iorio C, Berardi JM i wsp. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog. 2009; 1(1): 6.
68. Butler MI, Bastiaanssen TFS, Long-Smith C, Morkl S, Berding K, Ritz NL, Strain C, Patangia D, Patel S, Stanton C, O'Mahony SM, Cryan JF, Clarke G, Dinan TG. The gut microbiome in social anxiety disorder: evidence of altered composition and function. Transl Psychiatry. 2023 Mar 20;13(1):95.
69. Mysonhimer AR, Cannavale CN, Bailey MA, et al. Prebiotic consumption alters Microbiota but not biological markers of stress and inflammation or mental health symptoms in healthy adults: a randomized, controlled, crossover trial[J]. J Nutr. 2023;153:1283-96.
70. Chen YH, Bai J, Wu D, et al. Association between fecal microbiota and generalized anxiety disorder: severity and early treatment response[J]. J Affect Disord. 2019;259:56-66.
71. Zou R, Tian P, Xu M, et al. Psychobiotics as a novel strategy for alleviating anxiety and depression[J]. J Funct Foods. 2021;86:104718.
72. Vancampfort, D.; Wampers, M.; Mitchell, A.J.; Correll, C.U.; De Herdt, A.; Probst, M.; De Hert, M. A meta-analysis of cardiometabolic abnormalities in drug naïve, first-episode and multiepisode patients with schizophrenia versus general population controls. World Psychiatry 2013, 12, 240-250.
73. De Hert, M.; Schreurs, V.; Vancampfort, D.; Van Winkel, R. Metabolic syndrome in people with schizophrenia: A review. World Psychiatry 2009, 8, 15-22.
74. Sun, M.J.; Jang, M.H. Risk Factors of Metabolic Syndrome in Community-Dwelling People with Schizophrenia. Int. J. Environ. Res. Public Health 2020, 17, 6700.
75. Ward, H.B.; Beermann, A.; Nawaz, U.; Halko, M.A.; Janes, A.C.; Moran, L.V.; Brady, R.O., Jr. Evidence for Schizophrenia-Specific Pathophysiology of Nicotine Dependence. Front. Psychiatry 2022, 13, 804055.
76. Shen Y, Xu J, Li Z, Huang Y, Yuan Y, Wang J, et al. Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: a cross-sectional study. Schizophr Res. (2018) 197:470-7.
77. Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci Adv. (2019) 5:eaau8317.
78. N. Murray, S. Khalaf, T. F S Bastiaanssen, D. Kaulmann, E. Lonergan, J. F Cryan, G. Clarke, A. S Khashan, K. O’Connor, Compositional and Functional Alterations in Intestinal Microbiota in Patients with Psychosis or Schizophrenia: A Systematic Review and Meta-analysis, Schizophrenia Bulletin, Volume 49, Issue 5, September 2023, Pages 1239-1255.
79. Cheung SG, Goldenthal AR, Uhlemann AC, Mann JJ, Miller JM, Sublette ME. Systematic review of gut microbiota and major depression. Front Psychiatry. (2019) 10:34.
80. M. Elizabeth Sublette, Stephanie Cheung, Evan Lieberman, Shaohua Hu, J. John Mann, Anne-Catrin Uhlemann, Jeffrey M. Miller. Bipolar disorder and the gut microbiome: A systematic review. Bipolar Disorders.(2022).
81. Eslami Shahrbabaki, M., Sabouri, S., Sabahi, A., Barfeh, D., Divsalar, P., Esmailzadeh, M., & Ahmadi, A. (2020). The efficacy of probiotics for treatment of bipolar disorder-type 1: A randomized, double-blind, placebo controlled trial. Iranian Journal of Psychiatry, Jan, 15(1), 10-16.
82. Obi-Azuike C, Ebiai R, Gibson T, Hernandez A, Khan A, Anugwom G, Urhi A, Prasad S, Souabni SA, Oladunjoye F. A systematic review on gut-brain axis aberrations in bipolar disorder and methods of balancing the gut microbiota. Brain Behav. 2023 Jun;13(6):e3037. doi: 10.1002/brb3.3037. Epub 2023 May 1.
83. Dickerson, F., Adamos, M., Katsafanas, E., Khushalani, S., Origoni, A., Savage, C., Schweinfurth, L., Stallings, C., Sweeney, K., Goga, J., & Yolken, R. H. (2018). Adjunctive probiotic microorganisms to prevent rehospitalization in patients with acute mania: A randomized controlled trial. Bipolar Disorders, 20(7), 614-621.
84. Reininghaus, E. Z., Wetzlmair, L.-C., Fellendorf, F. T., Platzer, M., Queissner, R., Birner, A., Pilz, R., Hamm, C., Maget, A., Koidl, C., Riedrich, K., Klampfer, K., Ferk, K., & Dalkner, N. (2020). The impact of probiotic supplements on cognitive parameters in euthymic individuals with bipolar disorder: A pilot study. Neuropsychobiology, 79(1-2), 63-70.
85. Obi-Azuike C, Ebiai R, Gibson T, Hernandez A, Khan A, Anugwom G, Urhi A, Prasad S, Souabni SA, Oladunjoye F. A systematic review on gut-brain axis aberrations in bipolar disorder and methods of balancing the gut microbiota. Brain Behav. 2023 Jun;13(6):e3037.
86. Hadhazy A. Think Twice: How The Gut’s “Second Brain” Influences Mood and WellBeing. Scientific American; 2010.
87. Theoharides TC, Zhang B, Conti P. Decreased mitochondrial function and increased brain inflammation in bipolar disorders and other neuropsychiatric diseases. J. Clin. Psychopharmacol. 2011; 31(6): 685-687.
88. 83Vizcarra JA, WilsonPerez HE, Espay AJ. The power in numbers: gut microbiota in Parkinson's disease. Mov Disord. 2015;30(3):296298.
89. Quigley E. Microbiotabraingut axis and neurodegenerative diseases. Curr Neurol Neurosci Rep. 2017;17(12):94.
90. Mulak A, Bonaz B. Braingutmicrobiota axis in Parkinson's disease. World J Gastroenterol. 2015;21(37):1060910620.
91. Li Z, Liang H, Hu Y, Lu L, Zheng C, Fan Y, Wu B, Zou T, Luo X, Zhang X, Zeng Y, Liu Z, Zhou Z, Yue Z, Ren Y, Li Z, Su Q, Xu P. Gut bacterial profiles in Parkinson's disease: A systematic review. CNS Neurosci Ther. 2023 Jan;29(1):140-157.
92. Larsson H, Chang Z, D’Onofrio BM, Lichtenstein P. The heritability of clinically diagnosed attention deficit hyperactivity disorder across the lifespan. Psychol Med. 2014. Jul;44(10):2223-9.
93. Manor O, Levy R, Borenstein E. Mapping the inner workings of the microbiome: Genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. Cell Metabolism. 2014. Nov;20(5):742-52.
94. Duel BP, Steinberg-Epstein R, Hill M, Lerner M. A survey of voiding dysfunction in children with Attention DeficitHyperactivity Disorder. Journal of Urology. 2003. Oct;170(4 Part 2):1521-4.
95. Yang LL, Stiernborg M, Skott E, Gillberg T, Landberg R, Giacobini M, et al. Lower plasma concentrations of short-chain fatty acids (SCFAs) in patients with ADHD. Journal of Psychiatric Research. 2022. Dec;156:36-43.
96. Cickovski T, Mathee K, Aguirre G, Tatke G, Hermida A, Narasimhan G, Stollstorff M. Attention Deficit Hyperactivity Disorder (ADHD) and the gut microbiome: An ecological perspective. PLoS One. 2023 Aug 18;18(8):e0273890.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Author
This work is licensed under a Creative Commons Attribution 4.0 International License.