Kiedy psychiatra powinien pamiętać o badaniu stężenia homocysteiny? – przegląd literatury
DOI:
https://doi.org/10.2478/cpp-2021-0006Słowa kluczowe:
homocysteina, depresja, zaburzenie afektywne dwubiegunowe, schizofreniaAbstrakt
Wstęp: Homocysteina jest endogennym aminokwasem siarkowym, powstającym w wyniku przemian biochemicznych metioniny. Prawidłowe stężenie homocysteiny u osób zdrowych mieści się w granicach 5 - 15 µmol/l, a wartości powyżej 15 µmol/l określane są mianem hiperhomocysteinemii. Wykazano, że poziom homocysteiny może mieć związek z występowaniem zaburzeń psychicznych. Celem tego artykułu było poszukiwanie zależności pomiędzy poziomem tego aminokwasu, a występowaniem oraz rokowaniem w chorobie afektywnej dwubiegunowej, depresji, zaburzeniach lękowych, schizofrenii czy chorobie Alzheimera.
Materiał i metoda: Dokonano przeglądu dostępnej literatury przeszukując bazy PubMed oraz Google Scholar przy użyciu następujących słów-kluczy: homocysteina, depresja, choroba afektywna dwubiegunowa, schizofrenia, choroba Alzheimera w przedziale czasowym od 1992 do 2021 roku.
Wyniki: Z przeprowadzonych dotychczas badań wynika, że istnieje znacząca korelacja pomiędzy podwyższonym poziomem homocysteiny a występowaniem i gorszym przebiegiem wyżej wymienionych zaburzeń psychicznych.
Wnioski: W celu zapobieżenia konsekwencjom zwiększonego poziomu homocysteiny należy okresowo monitorować stężenie w surowicy krwi oraz wdrożyć odpowiednie postępowanie w przypadku nieprawidłowych wyników. Istotne jest przekazanie pacjentom wiedzy o następstwach nieleczonej hiperhomocysteinemii m.in.: miażdżyca naczyń, udar mózgu, choroba niedokrwienna serca, osteoporoza, wady cewy nerwowej, zaburzenia psychiczne i choroby neurodegeneracyjne. Należy także ustalić strategię obniżenia poziomu tego aminokwasu poprzez zmianę stylu życia, a także podaż kwasu foliowego, witamin: B12, B6, B2, N-acetylocysteiny i betainy.
Bibliografia
1. Magott M. Homocysteina nielipidowym czynnikiem patogenezy miażdżycy. Post. Hig. Med. Dośw. 1998; 52 (3): 259-267.
2. McCully K.S. Homocysteine and vascular disease. Nat. Med. 1969; 2: 386-389.
3. Łubińska M, Kazimierska E, Sworczak K. Hyperhomocysteinemia as a New Factor for Different Diseases. AdvClinExp Med. 2006; 15(5): 897-903.
4. Skovierova H, Vidomanova E, Mahmood S, Sopkova J, Drgova A, Cervenova T, et. al. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health. Int J Mol Sci. 2016; 17(10): 1733.
5. Laskowska-Klita T. Homocysteina i hiperhomocysteinemia. Pol. Merk. Lek. 2001;57: 135-137.
6. Winczewska-Wiktor A, Malendowicz-Major B, Steinborn B. The role of homocysteine in the physiological development and pathophysiology of disorders of the nervous system in children. NeurolDziec. 2012; 21(42): 11-21.
7. Wichlińska-Lipka M, Nyka WM. The role of homocysteine in dementia. Forum Medycyny Rodzinnej. 2008; 2(3): 223-228.
8. Zdrojewski T., Chwojnicki K., Bandosz P., Konarski R., Wyrzykowski B. Distribution of C-reactive protein and its relation to arterial hypertension in a country representing a high-risk region for cardiovascular diseases. Blood Press. 2006; 15(1): 20-26.
9. Karakuła H, Opolska A, Kowal A, Domański M, Płotka A, Perzyński J. Does diet affectourmood? The significance of folic acid and homocysteine. Pol MerkurLekarski. 2009; 26(152): 136-41.
10. Chiżyński K. Hiperhomocysteinemia — ważny czynnik ryzyka choroby niedokrwiennej serca. Pol. Przegl. Kardiol. 2002; 4 (2): 103-108.
11. Bhatia P, Singh N. Homocysteine excess: delineating the possible mechanism of neurotoxicity and depression. FundamClinPharmacol. 2015; 29(6): 522-528.
12. Rybakowski J, Pużyński S, Wciórka J. Psychiatria. T. 2. Wrocław. Elsevier Urban & Partner, 2010.
13. nimh.nih.gov [strona domowa w Internecie]. National Institute of Mental Health: Major Depression Among Adults; 2015 [aktualizowana 2019-02]. Dostępna z: https://www.nimh.nih. gov/health/statistics/major-depression#part_155033
14. who.int [stronadomowa w Internecie].World Health Organization: Fact sheet on depression; 2016 [aktualizowana 2020-01-30]. Dostępna z: https://www.who.int/news-room/ fact-sheets/detail/depression
15. Kang HJ, Stewart R, Bae KY, Kim SW, Shin IS, Kang H, et al. Predictive value of homocysteine for depression after acute coronary syndrome. Oncotarget. 2016; 7(42): 69032-69040.
16. Tolmunen T, Hintikka J, Voutilainen S, Ruusunen A, Alfthan G, Nyyssönen K, et al. Association between depressive symptoms and serum concentrations of homocysteine in men: a population study. Am J ClinNutr. 2004; 80(6): 1574-8.
17. Almeida OP, Lautenschlager N, Flicker L, Leedman P, Vasikaran S, Gelavis A, et.al. Association between homocysteine, depression, and cognitive function in community-dwelling older women from Australia. J Am GeriatrSoc. 2004; 52(2): 327-8.
18. Loprinzi PD, Cardinal BJ. Interrelationships among physical activity, depression, homocysteine, and metabolic syndrome with special considerations by sex. Prev Med. 2012; 54(6): 388¬392.
19. Churilla JR, Zoeller RF. Physical Activity: Physical Activity and the Metabolic Syndrome: A Review of the Evidence. American Journal of LifestyleMedicine. 2008; 2(2): 118-125.
20. Dunn AL, Trivedi MH, O'Neal HA. Physical activity dose-response effects on outcomes of depression and anxiety. MedSci Sports Exerc. 2001; 33(6 Suppl): S587-610.
21. Dunn AL, Trivedi MH, Kampert JB, Clark CG, Chambliss HO. Exercise treatment for depression: efficacy and dose response. Am J Prev Med. 2005; 28(1): 1-8.
22. Atienza AA, Moser RP, Perna F, Dodd K, Ballard-Barbash R, Troiano RP, et. al. Self-reported and objectively measured activity related to biomarkers using NHANES. MedSci Sports Exerc. 2011; 43(5): 815-21.
23. Agrawal A, Ilango K, Singh PK, Karmakar D, Singh GP, Kumari R, et al. Age dependent levels of plasma homocysteine and cognitive performance. Behav Brain Res. 2015; ;283: 139-44.
24. Zhou H, Zhong X, Chen B, Wu Z, Zhang M, Mai N, et al. Interactive effects of elevated homocysteine and late-life depression on cognitive impairment. J AffectDisord. 2020; 277: 212-217.
25. Cheng LS, Tu WJ, Shen Y, Zhang LJ, Ji K. Combination of High-Sensitivity C-Reactive Protein and Homocysteine Predicts the Post-Stroke Depression in Patients with Ischemic Stroke. Mol Neurobiol. 2018; 55(4): 2952-2958.
26. Folstein M, Liu T, Peter I, Buel J, Arsenault L, Scott T, et, al. The HomocysteineHypothesis of Depression. Am J Psychiatry. 2007; 164(6): 861-867.
27. De Berardis D, Olivieri L, Rapini G, Di-Natale S, Serroni N, Fornaro M, et. al. Alexithymia, suicide ideation and homocysteine levels in drug naïve patients with major depression: a study in the real world clinical practice. ClinPsychopharmacolNeurosci. 2019; 17(2): 318-322.
28. Esnafoglu E, Ozturan DD. The relationship of severity of depression with homocysteine, folate, vitamin B12, and vitamin D levels in children and adolescents. Child AdolescMentHealth. 2020; 25(4): 249-255.
29. Chung KH, Chiou HY, Chen YH. Associations between serum homocysteine levels and anxiety and depression among children and adolescents in Taiwan. Sci Rep. 2017; 7(1): 8330.
30. Ganji V, Kafai MR. Population references for plasma total homocysteine concentrations for U.S. children and adolescents in the post-folic acid fortification era. J Nutr. 2005; 135(9) :2253¬6.
31. Must A, Jacques PF, Rogers G, Rosenberg IH, Selhub J. Serum total homocysteine concentrations in children and adolescents: results from the third National Health and Nutrition Examination Survey (NHANES III). J Nutr. 2003; 133(8): 2643-9.
32. Wouters MG, Moorrees MT, van der Mooren MJ, Blom HJ, Boers GH, Schellekens LA, et. al. Plasmahomocysteine and menopausal status. Eur J Clin Invest. 1995; 25(11): 801-5.
33. da Silva VC, de Oliveira AC, D’Almeida V. Homocysteine and Psychiatric Disorders. Journal of InbornErrors of Metabolism and Screening. 2017.
34. Opolska A, Karakuła H, Kowal A, Szymona K, Polz-Dacewicz M. Comparison of serum homocysteine levels between patients with depression and control group members -preliminary report. Pol. J. Environ. Stud. 2006; 15(2): 523-527.
35. Permoda-Osip A, Kisielewski J, Dorszewska J, RybakowskIJ. Homocysteine and cognitivefunctions in bipolardepression. Psychiatr. Pol. 2014; 48(6): 1117-1126.
36. Moustafa AA, Hewedi DH, Eissa AM, Frydecka D, Misiak B. Homocysteine levels in schizophrenia and affective disorders-focus on cognition. Front BehavNeurosci. 2014; 8: 343.
37. Wan L, Li Y, Zhang Z, Sun Z, He Y, Li R. Methylenetetrahydrofolate reductase and psychiatric diseases. Translational Psychiatry. 2018; 8(1).
38. Permoda-Osip A, Dmitrzak-Weglarz M, Hauser J. Are Genes Connected with Homocysteine Metabolism Associated with Bipolar Disorder? Neuropsychobiology. 2014;69:107-111.
39. Salagre E, Vizuete AF, Leite M, Brownstein DJ, McGuinness A, Jacka F, et. al. Homocysteine as a peripheral biomarker in bipolar disorder: A meta-analysis. Eur Psychiatry. 2017; 43: 81-91.
40. Ghanizadeh A, Singh AB, Berk M, Torabi-Nami M. Homocysteine as a potential biomarker in bipolar disorders: a critical review and suggestions for improved studies. Expert Opin TherTargets. 2015; 19(7): 927-39.
41. Cheng L.S., Prasad A.N., Rieder M.J. Relationship between antiepileptic drugs and biological markers affecting long-term cardiovascular function in children and adolescents. Can J Clin Pharmacol 2010; 17: 5-46.
42. Gao L., Zeng X.N., Guo H.M., Wu X.M., Chen H.J., Di R.K., Wu Y. Cognitive and neurochemical alterations in hyperhomocysteinemic rat. NeurolSci. 2012; 33(1):39-43.
43. Muntjewerff J.W., Kahn R.S., Blom H.J., den Heijer M. Homocysteine, methylenetetrahydrofolate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry. 2006.
44. Misiak B., Frydecka, D., Slezak, R., Piotrowski P., Kiejna A. Elevated homocysteine level in first-episode schizophrenia patients - the relevance of family history of schizophrenia and lifetime diagnosis of cannabis abuse. Metab. Brain Dis. 2014; 29:661-670.
45. Narayan S.K., Verman A., Kattimani S., Ananthanarayanan P.H., Adithan C. Plasma homocysteine levels in depression and schizophrenia in South Indian Tamilian population. Indian J Psychiatry. 2014; 56(1):46-53.
46. Nishi A., Numata S., Tajima A., Kinoshita M., Kikuchi K., Shimodera S., et al. Meta-analyses of blood homocysteine levels for gender and genetic association studies of the MTHFR C677T polymorphism in schizophrenia. Schizophr Bull. 2014; 40(5):1154-63.
47. Kim T.H., Moon S.W. Serum homocysteine and folate levels in korean schizophrenic patients. Psychiatry Investig. 2011; 8(2):134-40.
48. Di Lorenzo R., Amoretti A., Baldini S., Soli M., Landi G., PollutriG.,et al. Homocysteine levels in schizophrenia patients newly admitted to an acute psychiatric ward. Acta Neuropsychiatr. 2015; 27(6):336-44.
49. Ayesa-Arriola R., Pérez-Iglesias R., Rodríguez-Sánchez J.M., Mata I., Gómez-Ruiz E., García-Unzueta M., et al. Homocysteine and cognition in first-episode psychosis patients. Eur Arch Psychiatry ClinNeurosci. 2012; 262(7):557-64.
50. Kevere L., Purvina S., Bauze D. Elevated serum levels of homocysteine as an early prognostic factor of psychiatric disorders in children and adolescents. Schizophr Res Treatment. 2012; 2012: 373261.
51. Numata S., Kinoshita M., Tajima A., Nishi A., Imoto I., Ohmori T. Evaluation of an association between plasma total homocysteine and schizophrenia by a Mendelian randomization analysis. BMC Med Genet. 2015;16:54.
52. Wysokiński A., Kłoszewska I. Homocysteine levels in patients with schizophrenia on clozapine monotherapy. Neurochem Res. 2013; 38(10):2056-62.
53. Trześniowska-Drukała B., Kalinowska S., Safranow K., Kłoda K., Misiak B., Samochowiec J. Evaluation of hyperhomocysteinemia prevalence and its influence on the selected cognitive functions in patients with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2019; 95: 109679.
54. Yang Y., Wang J., Xiong Z., Yao X., Zhang Y., Ning X, et. al. Prevalence and clinical demography of hyperhomocysteinemia in Han Chinese patients with schizophrenia. EurArch Psychiatry ClinNeurosci. 2020.
55. Zhou S., Huang Y., Feng Y., Li H., Wu K., Yang M., et. al. Association Between Plasma Homocysteine Levels and Cognitive Deficits in Han Chinese Patients with Schizophrenia across Age Groups. ResearchSquare. 2021.
56. Huang Y., Wu K., Li H., Zhou J., Xiong D., Huang X., et al. Homocysteine level, body mass index and clinical correlates in Chinese Han patients with schizophrenia. Sci Rep., 2020; 10(1):16119.
57. Foscolou A., Rallidis L.S., Tsirebolos G., Critselis E., Katsimardos A., Drosatos A., et al. The association between homocysteine levels, Mediterranean diet and cardiovascular disease: a case-control study. Int J Food SciNutr., 2019; 70(5):603-611.
58. Liu J., Quan J., Li Y., Wu Y., Yang L. Blood homocysteine levels could predict major adverse cardiac events in patients with acute coronary syndrome: A STROBE-compliant observational study. Medicine (Baltimore), 2018; 97(40):e12626.
59. Zhang Y., Zhao J., Wang W., Fan W, Tang W., Zhang C. Homocysteine, but not MTHFR gene polymorphism, influences depressive symptoms in patients with schizophrenia. J AffectDisord. 2020; 272:24-27.
60. Gaweł M., Potulska-Chromik A. Choroby neurodegeneracyjne: choroba Alzheimera i Parkinsona. Neurodegenerative diseases: Alzheimer’s and Parkinson’s disease. Borgis -PostępyNaukMedycznych. 2015; 28(7): 468-47.
61. Zduńska M., Najmowska K., Rość D. The role of homocysteine in dementia. Gerontologia Polska. 2020; 28:45-51.
62. Huang L.K., Chao S.P., Hu C.J. Clinical trials of new drugs for Alzheimer disease. J BiomedSci 27. 2020, 18.
63. McGuinness B., Craig D., Bullock R., Passmore P. Statins for the prevention of dementia. Cochrane Database SystRev. 2016; (1):CD003160.
64. Smith A.D., Refsum H., Bottiglieri T., Fenech M., Hooshmand B., McCaddon A., et. al. Homocysteine and Dementia: An International Consensus Statement. J Alzheimers Dis. 2018;62(2):561-570.
65. Mziray M., Siepsiak M., Żuralska R., Domagała P. The importance of folic acid in the diet of older people. The validity of food supplementation. Pielęgniarstwo Polskie. 2017, 64.
66. Ma F., Wu T., Zhao J., Ji L., Song A., Zhang M., et. al. Plasma Homocysteine and Serum Folate and Vitamin B12 Levels in Mild Cognitive Impairment and Alzheimer's Disease: A Case-Control Study. Nutrients. 2017;9(7):725. [60]
67. Meng H., Li Y., Zhang W., Zhao Y., Niu X., Guo J. The relationship between cognitive impairment and homocysteine in a B12 and folate deficient population in China: A cross-sectional study. Medicine (Baltimore). 2019;98(47):e17970.
68. Roostaei T., Felsky D., Nazeri A., De Jager P.L., Schneider J.A., Bennett D.A., et. al. Genetic influence of plasma homocysteine on Alzheimer's disease, Neurobiology of Aging, 2018; 62: 243. e7-243.e14.
69. Farina N., Jernerén F., Turner C., Hart K., Tabet N. Homocysteine concentrations in the cognitive progression of Alzheimer's disease. ExpGerontol. 2017; 99:146-150.
70. Nieraad H., de Bruin N., Arne O., Hofmann M.C.J, Schmidt M., Saito T., et. al. Impact of Hyperhomocysteinemia and Different Dietary Interventions on Cognitive Performance in a Knock-in Mouse Model for Alzheimer's Disease. Nutrients. 2020; 12(11):3248.
71. Oikonomidi A., Lewczuk P., Kornhuber J., Smulders Y., Linnebank M., Semmler A., et. al. Homocysteine metabolism is associated with cerebrospinal fluid levels of soluble amyloid precursor protein and amyloid beta. J Neurochem. 2016; 139(2):324-332.
72. Mahaman Y.A.R., Huang F., Wu M., Wang Y., Wei Z., Bao J., et. al. MoringaOleifera Alleviates Homocysteine-Induced Alzheimer's Disease-Like Pathology and Cognitive Impairments. J AlzheimersDis. 2018;63(3):1141-1159.
73. Ho Y.S., Yu M.S., Yang X.F., So K.F., Yuen W.H., Chang R.C. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lyciumbarbarum, against homocysteine-induced toxicity in rat cortical neurons. J AlzheimersDis. 2010;19(3):813¬27.
74. Douaud G., Refsum H., de Jager C.A., Jacoby R., Nichols T.E., Smith S.M., et. al. Preventing Alzheimer's disease-related gray matter atrophy by B-vitamin treatment. Proc NatlAcadSci U S A. 2013; 110(23):9523-8.
75. Tsiachristas A., Smith A.D. B-vitamins are potentially a cost-effective population health strategy to tackle dementia: Too good to be true? AlzheimersDement. 2016; 2, 156-161.
76. Finkelstein J.D. Pathways and regulation of homocysteine metabolism in mammals. Semin Thromb Hemost. 2000;26(3):219-25.
77. Apeland T, Mansoor M.A., Pentieva K, McNulty H., Strandjord R.E., Fasting and Post-Methionine Loading Concentrations of Homocysteine, Vitamin B2, and Vitamin B6 in Patients on Antiepileptic Drugs. Clinical Chemistry, 2003, 49(6): 1005-1008.
78. Chiuve S.E., Giovannucci E.L., Hankinson S.E., Hunter D.J., Stampfer M.J., Willett W.C. et. al. Alcohol intake and methylenetetrahydrofolate reductase polymorphism modify the relation of folate intake to plasma homocysteine. Am J Clin Nutr. 2005;82(1):155-62.
79. de Bree A., Verschuren W.M., Bjørke-Monsen A.L., van der Put N.M., Heil S.G., Trijbels F.J. et. al. Effect of the methylenetetrahydrofolate reductase 677C-->T mutation on the relations among folate intake and plasma folate and homocysteine concentrations in a general population sample. Am J Clin Nutr. 2003;77(3):687-93.
80. Holmes M.V., Newcombe P., Hubacek J.A., Sofat R., Ricketts S.L., Cooper J. et.al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet. 2011;13;378(9791):584-94.
81. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA. 2002;23-30;288(16):2015-22.
82. Perna A.F., Sepe I., Lanza D., Pollastro R.M., De Santo N.G., Ingrosso D. Hyperhomocysteinemia in chronic renal failure: alternative therapeutic strategies. J Ren Nutr. 2012;22(1):191-4.
Pobrania
Opublikowane
Numer
Dział
Licencja
Prawa autorskie (c) 2021 Autorzy

Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.