Cellular and neuronal mechanisms that underlie addiction- literature review
DOI:
https://doi.org/10.2478/cpp-2022-0016Keywords:
reward system, DRD2 gene, DAT, dopamineAbstract
Introduction: Addictive substances act on a number of neurotransmitter systems, and the end result of this action is the activation of the reward system in the brain. The cellular and neuronal mechanisms that underlie addiction have long been searched for. One of such neurotransmitters is dopamine, a catecholamine synthesized in neurons located mainly in the midbrain.
Material and method: The available literature was reviewed on the Pubmed platform and from other sources. The analysis included original studies, reviews.
The aim of the study was to review the literature on the relationship between the DRD2 gene and the occurrence of substance addiction.
Discussion: This work presents several currently discussed biological mechanisms, especially at the molecular and genetic level, involved in the process of addiction to various psychoactive substances. They discovered the brain structures that are most at risk, as well as other neurotransmitter systems and receptor proteins through which they can exert their pathological effects. It has also been established that exposure to psychoactive substances causes significant changes in expression in over 100 genes (including genes for dopaminergic, serotonergic and signaling pathways). The DRD2 receptor (present, among others, in the nucleus accumbens) plays an important role in the reward system, in the transmission of information. The weakening of this conductivity is a significant risk factor for the onset of clinical features that are associated with reward system deficiency syndrome. The expression of the D2 receptor gene may take up to 2 isoforms: short D2S and long D2L.
Conclusions: Further research at the molecular level may result in the modification of psychotherapy and pharmacotherapy in terms of their personalization.
References
1. Rubí B., Maechler P. Minireview: new roles for peripheral dopamine on metabolic control and tumor growth: let's seek the balance. Endocrinology. 2010; 151(12): 5570-5581.
2. Baik JH. Dopamine signaling in reward-related behaviors. Frontiers in neural circuits. 2013; 7: 152.
3. Konturek S. Fizjologia człowieka. Tom IV Neurofizjologia. Wyd. VI. Wydawnictwo Uniwersytetu Jagiellońskiego. 1997.
4. Sadowski B. Biologiczne mechanizmy zachowania się ludzi i zwierząt. PWN. 2009.
5. Chmielowiec J., Boroń A. Association of DRD2 (rs 1799732), ANKK1 (rs1800497), DAT (rs28363170), DRD4 (exon 3 -VNTR) gene polymorphisms in the context of relapses in therapy. Curr Probl Psychiatry. 2020; 21(4): 1-10.
6. Pivonello R., Ferone D., Lombardi G., Colao A., Lamberts S.W.J., Hofland LJ. Novel insights in dopamine receptor physiology. Eur J Endocrinol. 2007; 156: S13-21.
7. Banday AA., Fazili FR., Lokhandwala MF. Insulin causes renal dopamine D1 receptor desensitization via GRK2-mediated receptor phosphorylation involving phosphatidylinositol 3-kinase and protein kinase C. Am J Physiol Renal Physiol. 2007; 293: F877-F884.
8. Surmeier DJ., Shen W., Day M., Gertler T.., Chan S, Tian X., et al. Rola dopaminy w modulowaniu struktury i funkcji obwodów prążkowia. Prog Mózg Res. 2010; 183:149–167.
9. Kandel ER., Schwartz JH., Jessell TM., Siegelbaum S., Hudspeth AJ, Mack S. Principles of neural science. McGraw-hill. New York. 2000; 4: 1227-1246.
10. Schmitt KC., Reith ME. Regulation of the dopamine transporter: aspects relevant to psychostimulant drugs of abuse. Ann N Y Acad Sci. 2010; 1187: 316-340.
11. Longstaff A. Neurobiologia. PWN. 2002: 43-44.
12. Hökfelt T. Neuropeptides in perspective: the last ten years. Neuron. 1991; 7: 867-879.
13. Wang S., Che T., Levit A., Shoichet BK., Wacker D., Roth B.L. Structure of the D2 dopamine receptor bound to the atypical antipsychotic drug risperidone. Nature. 2018; 555(7695): 269¬-273.
14. Hussain T., Lokhandwala MF. Renal dopamine receptors and hypertension. Exp Biol Med. 2003; 228:134-142.Górska T., Grabowska A., Zagrodzka J. Mózg a zachowanie. PWN. 1997.
15. Górska T., Grabowska A., Zagrodzka J. Mózg a zachowanie. PWN. 1997.
16. de Manzano Ö., Cervenka S., Karabanov A., Farde L., Ullén F. Thinking outside a less intact box: thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS One. 2010; 5(5):1-6.
17. van den Brink WJ., Palic S., Kohler I., de Lange ECD. Access to the CNS: Biomarker Strategies for Dopaminergic Treatments. Pharm Res. .2018; 35(3):64.
18. True WR., Heath AC., Scherrer JF., Waterman B., Goldberg J., Lin N., et al. Genetic and environmental contributions to smoking. Addiction. 1997; 92:1277-1287.
19. Sullivan PF., Kendler KS. The genetic epidemiology of smoking. Nicotine Tob Res 1(Suppl 2).1999; S51–S57. discussion S69-S70.
20. Hamilton AS., Lessov-Schlaggar CN., Cockburn MG., Unger JB., Cozen W., Mack TM. Gender differences in determinants of smoking initiation and persistence in California twins. Cancer Epidemiol Biomark Prev. 2006; 15:1189-1197.
21. Hardie TL., Moss HB., Lynch KG. Genetic correlations between smoking initiation and smoking behaviors in a twin sample. Addict Behav. 2006; 31: 2030–2037.
22. Li MD., Ma JZ., Cheng R., Dupont RT., Williams NJ., Crews KM., et al. A genome-wide scan to identify loci for smoking rate in the Framingham heart study population. BMC Genet. 2003; 4:S103.
23. Goodman A., Neurobiology of addiction: An integrative review. Biochem Pharmacol 2008; 75,: 266-322.
24. Robbins TW., Ersche KD., Everit BJ. Drug Addiction and the Memory System of the Brain. Annals N.Y. Acad Sci. 2008; 1141: 1-21.
25. Easton DF., Pooley KA., Dunning AM., Pharoah PD., Thompson D., Ballinger DG., et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature. 2007; 47(7148):1087-93.
26. Chmielowiec J., Chmielowiec K., Masiak J., Pawłowski T., Larysz D., Grzywacz A. Analysis of Relationships between DAT1 Polymorphism Variants, Personality Dimensions, and Anxiety New Psychoactive Substance (Designer Drug) (NPS) Users. Genes. 2021; 12(12):1977.
27. Hunter DJ., Kraft P., Jacobs KB., Cox DG., Yeager M., Hankinson SE. A genome-wide association study identifies alleles in FGFR associated with risk of sporadic postmenopausal breast cancer. Nature Genetics. 2007; 39: 870-874.
28. Frayling TM., Timpson NJ., Weedon MN., Zeggini E., Freathy RM., Lindgren CM., et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007; 316(5826): 889-94.
29. Rioux JD., Xavier RJ., Taylor KD., Silverberg MS., Goyette P., Huett A., et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet. 2007; 39(5): 596-604.
30. Uhl GR., Drgon T., Johnson C., Li CY., Contoreggi C., Hess J., Liu QR. Molecular genetics of addiction and related heritable phenotypes. Ann of the NY Acad of Sci. 2008; 1141: 318-381.
31. Gorwood P., Le Strat Y., Ramoz N., Dubertret C., Moalic JM., Simonneau M. Genetics of dopamine receptors and drug addiction. Hum Gene.t 2012; 131(6): 803-22.
32. Chmielowiec K., Michałowska-Sawczyn M., Masiak J., Chmielowiec J., Trybek G., Niewczas M., Czarny W., Cieszczyk P., Massidda M., Proia P., Grzywacz A. Analysis of DRD2 Gene Polymorphism in the Context of Personality Traits in a Group of Athletes. Genes. 2021; 12(8):1219.
33. Maldonado R., Saiardi A., Valverde O., Samad TA., Roques BP., Borelli E. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature. 1997; 388(6642): 586-589.
34. Blum K., Chen AL., Braverman ER., Comings DE., Chen TJ., Arcuri V., et al. Attention-deficit-hyperactivity disorder and reward deficiency syndrome. Neuropsychiatr Dis Treat. 2008; 4(5): 893-918.
35. Clarke TK., Weiss AR., Ferarro TN., Kampman KM., Dackis CA., Pettinati HM., et al. The dopamine receptor D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann Hum Genet. 2014; 78(1): 33-39.
36. Zhang Y., Bertolino A., Fazio L., Blasi G., Rampino A., Romano R., et al. Polymorphisms in human dopamine D2 receptor gene affect gene expression, splicing, and neuronal activity during working memory. Proc Natl Acad Sci USA. 2007; 104(51): 20552¬7.
37. Moyer RA., Wang D., Papp AC., Smith RM., Duque L., Mash DC., et al. Intronic polymorphisms affecting alternative splicing of human dopamine D2 receptor are associated with cocaine abuse. Neuropsychopharmacology. 2011; 36(4):753-762.
38. Seeman P. Schizophrenia thalamus imaging: Low benzamide binding to dopamine D2 receptors suggests fewer D2 Short receptors and less presynaptic terminals. Psychiatry Res. 2013; 214(3):175-180.
39. Vereczkei A., Demetrovics Z., Szekely A., Sarkozy P., Antal P., Szilagyi A., et al. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS One. 2013; 8(6): e66592.
40. Tsou YH., Zhang XQ., Zhu H., Syed S., Xu X. Drug delivery to the brain across the blood–brain barrier using nanomaterials. Small. 2017; 13(43): 1701921.
41. Małecka I., Jasiewicz A., Suchanecka A., Samochowiec J., Grzywacz A. Association and family studies of DRD2 gene polymorphisms in alcohol dependence syndrome. Postepy Hig Med Dosw. 2014; 68 : 1257-1263.
42. Arinami T., Gao M., Hamaguchi H., Toru MA. functional polymorphism in the promoter region of the dopamine D2 receptor gene is associated with schizophrenia. Hum Mol Genet. 1997; 6(4): 577-582.
43. Jönsson EG., Nöthen MM., Grünhage F., Farde L., Nakashima Y., Propping P., et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry. 1999; 4(3): 290¬296.
44. Filbey FM., Claus ED., Morgan M., Forester GR., Hutchison K. Dopaminergic genes modulate response inhibition in alcohol abusing adults. Addict Biol. 2012; 17(6):1046-56.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.