Differences in cognitive functioning between older and younger people with multiple myeloma
DOI:
https://doi.org/10.12923/2353-8627/2025-0007Keywords:
memory, medical neuropsychology, chemobrainAbstract
Introduction: The aim of the study was to illustrate the difference in how multiple myeloma and its treatment affect the cognitive functioning of both older and younger patients.
Material and methods: The study involved the use of selected neuropsychological methods, i.e., experimental trials based on the Battery of Tests for Assessing Cognitive Functions PU1 and the Choynowski’s Memory Scale.
Results: The interaction of health status and age appeared to be a differentiating factor between subjects under and over 65 years of age. Younger people with multiple myeloma displayed poorer performance in direct auditory memory compared to subjects of the same age without a cancer diagnosis. Similarly, regarding long-term verbal memory, patients in middle adulthood showed inferior performance in verbal memory as compared to those without multiple myeloma. Phonemic and semantic verbal fluency levels were also lower across some indicators in younger patients compared to older people with plasma cell myeloma. Better task performance by younger patients subjects with cancer was only noticeable in terms of short-term visual memory.
Discussion and conclusions: Decreased cognitive functioning in the middle adulthood group was associated with a worse disease course. Although the disease progresses rapidly and is detected at an advanced stage, but this does not translate negatively into patient survival, which results from a good response to treatment, mainly bone marrow transplantation. The younger age group is also subjected to more aggressive forms of treatment, known as high-dose chemotherapy, which may be associated with their poorer condition and diminished mental and physical condition.
References
1. Nowotwory złośliwe w Polsce w 2018 roku. Krajowy Rejestr Nowotworów [home page on the Internet]. Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy; 2020 [updated June 21, 2022; cite July 30, 2022]. Accessible at: http://onkologia.org.pl/wp-content/uploads/nowotwory_2018.pdf
2. Zalecenia Polskiej Grupy Szpiczakowej dotyczące rozpoznawania i leczenia szpiczaka plazmocytowego oraz innych dyskrazji plazmocytowych na rok 2021 [home page on the Internet]. Polska Grupa Szpiczakowa; 2021 [updated June 21, 2022; cite July 30, 2022]. Accessible at: https://hematoonkologia.pl/polska-grupa-szpiczakowa/zalecenia/id/4420-zalecenia-polskiej-grupy-szpiczakowej-dotyczace-rozpoznawania-i-leczenia-szpiczaka-plazmocytowego-oraz-innych-dyskrazji-plazmocytowych-na-rok-2021
3. Charliński G., Wiater E. Epidemiologia nowotworów złośliwych w Polsce i czynniki zależne od człowieka. W: Charliński G, Jędrzejczak W. W. red., Onkologia dla lekarzy POZ. Warszawa; Medical Tribune Polska: 2017: 18-19.
4. Dmoszyńska A, Usnarska-Zubkiewicz L, Walewski J, Lech-Marańda E, Walter-Croneck A, Pieńkowska-Grela B, et al. Zalecenia Polskiej Grupy Szpiczakowej dotyczące rozpoznawania i leczenia szpiczaka plazmocytowego oraz innych dyskrazji plazmocytowych na rok 2017. Acta Haematol Pol. 2017; 48(2): 55-103.
5. Zachorowania i zgony na nowotwory złośliwe w Polsce. Krajowy Rejestr Nowotworów [home page on the Internet]. Narodowy Instytut Onkologii im. Marii Skłodowskiej-Curie – Państwowy Instytut Badawczy; 2014 [updated June 21, 2022; cite July 30, 2022]. Accessible at: http://onkologia.org.pl/szpiczak-mnogi-nowotwory-komorek-plazmatycznych-c90/
6. Aluise C. D., Sultana R., Tangpong J., Vore M., Clair D. S., Moscow J. A., Butterfield D. A. Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. W: Raffa R. B, Tallarida R. J. red., Chemo Fog. Advances in Experimental Medicine and Biology. New York; Springer: 2010: 147-156.
7. Raffa RB. A proposed mechanism for chemotherapy-related cognitive impairment (‘chemo-fog’). J. Clin. Pharm. Ther. 2011; 36(3): 257-259.
8. Jenkins V, Thwaites R, Cercignani M, Sacre S, Harrison N, Whiteley-Jones H, et al. A feasibility study exploring the role of pre-operative assessment when examining the mechanism of ‘chemo-brain’ in breast cancer patients. Springerplus, 2016; 5(1): 1-11.
9. Tsavaris N, Kosmas C, Vadiaka M, Kanelopoulos P, Boulamatsis D. Immune changes in patients with advanced breast cancer undergoing chemotherapy with taxanes. Br. J. Cancer, 2002; 87(1): 21-27.
10. Janelsins MC, Mustian KM, Palesh OG, Mohile SG, Peppone LJ, Sprod LK., et al. Differential expression of cytokines in breast cancer patients receiving different chemotherapies: implications for cognitive impairment research. Support Care Cancer, 2012; 20(4): 831-839.
11. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006; 27(1): 24-31.
12. Wang XM, Walitt B, Saligan L, Tiwari AF, Cheung CW, Zhang ZJ. Chemobrain: a critical review and causal hypothesis of link between cytokines and epigenetic reprogramming associated with chemotherapy. Cytokine, 2015; 72(1): 86-96.
13. Khan MA, Garg K, Bhurani D, Agarwal NB. Early manifestation of mild cognitive impairment in B-cell non-Hodgkin’s lymphoma patients receiving CHOP and rituximab-CHOP chemotherapy. Naunyn Schmiedebergs Arch Pharmacol, 2016; 389(12): 1253-1265.
14. Kesler S, Janelsins M, Koovakkattu D, Palesh O, Mustian K, Morrow G, et al. Reduced hippocampal volume and verbal memory performance associated with interleukin-6 and tumor necrosis factor-alpha levels in chemotherapy-treated breast cancer survivors. Brain Behav Immun, 2013; 30: 109-116.
15. Lyon DE, Cohen R, Chen H, Kelly DL, McCain NL, Starkweather A, et al. Relationship of systemic cytokine concentrations to cognitive function over two years in women with early stage breast cancer. J Neuroimmunol, 2016; 301: 74-82.
16. Jones D, Vichaya EG, Wang XS, Sailors MH, Cleeland CS, Wefel JS. Acute cognitive impairment in patients with multiple myeloma undergoing autologous hematopoietic stem cell transplant. Cancer, 2013; 119(23): 4188-4195.
17. Alexandrakis MG, Passam FH, Kyriakou DS, Christophoridou AV, Perisinakis K, Hatzivasili A, et al. Serum level of interleukin-16 in multiple myeloma patients and its relationship to disease activity. Am. J. Hematol. 2004; 75(2): 101-106.
18. Lauta VM. A review of the cytokine network in multiple myeloma. Cancer, 2003; 97(10): 2440-2452.
19. Jurczyszyn A, Czepiel, J, Biesiada G, Gdula-Argasińska J, Cibor D, Owczarek, D, et al. HGF, sIL-6R and TGF-β1 Play a Significant Role in the Progression of Multiple Myeloma. J. Cancer, 2014; 5(7): 518–524.
20. Dmoszyńska A. Szpiczak mnogi-nowe cele leczenia. Onkol. Prakt. Klin. 2008; 4(5): 172-176.
21. Bataille R, Jourdan M, Zhang XG, Klein B. Serum levels of interleukin 6, a potent myeloma cell growth factor, as a reflect of disease severity in plasma cell dyscrasias. J Clin Invest. 1989; 84(6): 2008-2011.
22. Reibnegger G, Krainer M, Herold M, Ludwig H, Wachter H, Huber H. Predictive value of interleukin-6 and neopterin in patients with multiple myeloma. Cancer Res. 1991; 51(23 Part 1): 6250-6253.
23. Thomas X, Anglaret, B, Magaud JP, Epstein J, Archimbaud E. Interdependence between cytokines and cell adhesion molecules to induce interleukin-6 production by stromal cells in myeloma. Leuk Lymphoma, 1998; 32(1-2): 107-119.
24. Guo YQ, Chen SL. The significance of IGF-1, VEGF, IL-6 in multiple myeloma progression. Zhonghua xue ye xue za zhi= Zhonghua xueyexue zazhi, 2006; 27(4): 231-234.
25. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-α. Endocrinol. 2000; 141(11): 3956-3964.
26. Otsumi T, Yata K, Sakaguchi H, Uno M, Fujii T, Wada H, et al. IL-10 in myeloma cells. Leuk Lymphoma, 2002; 43(5): 969-974.
27. Wang H, Wang L, Chi PD, Chen XQ, Geng QR, Xia ZJ, et al. High level of interleukin-10 in serum predicts poor prognosis in multiple myeloma. Br J Cancer, 2016; 114(4): 463-468.
28. Kovacs E. Interleukin-6 leads to interleukin-10 production in several human multiple myeloma cell lines. Does interleukin-10 enhance the proliferation of these cells?. Leuk. Res. 2010; 34(7): 912-916.
29. Ahles TA, Tope DM, Furstenberg C, Hann D, Mills L. (1996). Psychologic and neuropsychologic impact of autologous bone marrow transplantation. J Clin Oncol, 1996; 14(5): 1457-1462.
30. Andrykowski MA, Schmitt FA, Gregg ME, Brady MI, Lamb DG, Henslee-Downey PJ. (1992). Neuropsychologic impairment in adult bone marrow transplant candidates. Cancer, 1992; 70(9): 2288-2297.
31. Patchell RA, White CL, Clark AW, Beschorner WE, Santos GW. Neurologic complications of bone marrow transplantation. Neurology, 1985; 35(3): 300-306.
32. Jacobs SR, Small BJ, Booth-Jones M, Jacobsen PB, Fields KK. Changes in cognitive functioning in the year after hematopoietic stem cell transplantation. Cancer, 2007; 110(7): 1560-1567.
33. Suska A, Jurczyszyn A. Epidemiologia i etiopatogeneza szpiczaka plazmocytowego i gammapatii monoklonalnej o niezdefiniowanym znaczeniu. Postepy Hig Med Dosw. 2018; 72: 953-965.
34. Borkowska A.R., Sajewicz-Radtke U., Lipowska M., Kalka D. Bateria diagnozy funkcji poznawczych PU1. Gdańsk; Pracownia Testów Psychologicznych i Pedagogicznych SEBG: 2015.
35. Choynowski M. Skala pamięci. Warszawa; Polska Akademia Nauk Pracownia Psychometryczna: 1959.
36. Eberhardt B, Dilger S, Musial F, Wedding U, Weiss T, Miltner WH. Short-term monitoring of cognitive functions before and during the first course of treatment. J. Cancer Res. Clin. Oncol. 2006; 132(4): 234-240.
37. Cruzado JA, López-Santiago S, Martínez-Marín V, José-Moreno G, Custodio AB, Feliu J. Longitudinal study of cognitive dysfunctions induced by adjuvant chemotherapy in colon cancer patients. Support Care Cancer, 2014; 22(7): 1815-1823.
38. Daniluk B, Szepietowska EM. Płynność semantyczna i literowa osób w różnych fazach dorosłości – czynniki modyfikujące wykonanie zadań fluencji słownej -część II. Ann. Univ. Mariae Curie-Skłodowska, J Paedagog.-Psychol. 2009: 111-128.
39. Szepietowska EM, Lipian J. Fluencja słowna neutralna i afektywna u chorych z uszkodzeniem prawej, lewej lub obu półkul mózgu. Psychiatr. Pol. 2012; 46: 539-551.
40. Alibhai SM, Breunis H, Timilshina N, Marzouk S, Stewart D, Tannock I, et al. Impact of androgen-deprivation therapy on cognitive function in men with nonmetastatic prostate cancer. Clin. Oncol. 2010; 28(34): 5030-5037.
41. Gaman AM, Uzoni A, Popa-Wagner A, Andrei A, Petcu EB. The Role of Oxidative Stress in Etiopathogenesis of Chemotherapy Induced Cognitive Impairment (CICI)-”Chemobrain”. Aging dis. 2016; 7(3): 307–317.
42. Miller KD, Nogueira L, Mariotto AB, Rowland JH, Yabroff KR, Alfano CM, et al. Cancer treatment and survivorship statistics, 2019. CA: Cancer J. Clin. 2019; 69(5): 363-385.
43. Parry C, Kent EE, Mariotto AB, Alfano CM, Rowland JH. Cancer survivors: a booming population. Cancer Epidemiol Biomarkers Prev. 2011; 20(10): 1996-2005.
44. Henderson TO, Ness KK, Cohen HJ. Accelerated aging among cancer survivors: from pediatrics to geriatrics. Am Soc Clin Oncol Educ Book. 2014; 34(1): 423-430.
45. Hurria A, Jones L, Muss HB. Cancer treatment as an accelerated aging process: assessment, biomarkers, and interventions. Am Soc Clin Oncol Educ Book. 2016; 36: 516-522.
46. Ahles TA, Root JC, Ryan EL. Cancer-and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012; 30(30): 3675–3686.
47. Guida JL, Ahles TA, Belsky D, Campisi J, Cohen HJ, DeGregori J, et al. Measuring aging and identifying aging phenotypes in cancer survivors. J Natl Cancer Inst. 2019; 111(12): 1245-1254.
48. Hurria A, Rosen C, Hudis C, Zuckerman E, Panageas KS, Lachs MS, et al. Cognitive function of older patients receiving adjuvant chemotherapy for breast cancer: a pilot prospective longitudinal study. J Am Geriatr Soc. 2006; 54(6): 925-931.
49. Bove V, Garrido D, Riva E. Young age and autologous stem cell transplantation are associated with improved survival in newly diagnosed multiple myeloma. Hematol Transfus Cell Ther. 2021; 43(3): 295–302.
50. Ludwig H, Durie BG, Bolejack V, Turesson I, Kyle RA, Blade J, et al. Myeloma in patients younger than age 50 years presents with more favorable features and shows better survival: an analysis of 10 549 patients from the International Myeloma Working Group. Blood. 2008; 111(8): 4039-4047.
51. Chretien ML, Hebraud B, Cances-Lauwers V, Hulin C, Marit G, Leleu X, et al. (2014). Age is a prognostic factor even among patients with multiple myeloma younger than 66 years treated with high-dose melphalan: the IFM experience on 2316 patients. Haematologica. 2014; 99(7): 1236–1238.
52. Mendez MF. Early-onset Alzheimer disease. Neurologic clinics. 2017; 35(2): 263-281.
53. Tellechea P, Pujol N, Esteve-Belloch P, Echeveste B, García-Eulate MR, Arbizu J, et al. Early-and late-onset Alzheimer disease: are they the same entity?. Neurología (English Edition). 2018; 33(4): 244-253.
54. Ahles TA, Saykin AJ, Noll WW, Furstenberg CT, Guerin S, Cole B, et al. The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psycho-Oncology: Journal of the Psychological, Social and Behavioral Dimensions of Cancer. 2003;12(6): 612-619.
55. Strittmatter WJ, Roses AD. Apolipoprotein E and Alzheimer disease. Proc Natl Acad Sci. 1995; 92(11): 4725-4727.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Authors

This work is licensed under a Creative Commons Attribution 4.0 International License.