Application of artificial intelligence tools in diagnosis and treatmentof mental disorders
DOI:
https://doi.org/10.12923/2353-8627/2023-0001Keywords:
artificial intelligence, digital therapy, psychiatry, machine learningAbstract
Introduction: Artificial intelligence research is increasing its application in mental health services. Machine learning, deep learning, semantic analysis in the form of transcriptions of patients' statements enable early diagnosis of psychotic disorders, ADHD, anorexia nervosa. Of great importance are the so-called digital therapists. This paper aims to show the use of AI tools in diagnosing, treating, the benefits and limitations associated with mental disorders.
Material and methods: This literature review was conducted by searching scientific articles from 2015 to 2022. The basis were PubMED, OpenKnowledge, Web of Science, using the following keywords: artificial intelligence, digital therapy, psychiatry, machine learning.
Results: A review indicates the widespread use of AI tools in screening for mental disorders. These tools advance the clinical diagnosis medical specialists make up for several years. They impact solving medical staff shortages, lack of access to medical facilities and leveling patient resistance to treatment. The benefits are ultra-fast analysis of large sets of information, effective screening of people in need of specialized psychiatric care, reduction of doctors' duties and maximization of their work efficiency. During the current COVID 19 pandemic, robots in the form of digital psychotherapists are playing a special role.
Conclusions: The need for further research, testing and clarification of regulations related to the use of AI tools is indicated. Ethical and social problems need to be resolved. The tools should not form the basis of autonomous therapy without the supervision of highly trained professionals. Human beings should be at the center of analysis just as their health and well-being.
References
1. Fakhoury M, Artificial Intelligence in Psychiatry. Adv Exp Med Biol 2019(1192):119-125.
2. Kaul V, Enslin, S, Gross SA. History of artificial intelligence in medicine. Gastrointestinal endoscopy, 2020;92(4):807-812. https://doi.org/10.1016/j.gie.2020.06.040
3. Muthukrishnan N, Maleki F, Ovens K, Reinhold C, Forghani B, Forghani R, Brief History of Artificial Intelligence. Neuroimaging Clin N Am. 2020;30(4):393-399. https://doi.org/10.1016/j.nic.2020.07.004
4. Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang GZ. Deep Learning for Health Informatics. IEEE J Biomed Health Inform. 2017;21(1):4-21. https://doi.org/10.1109/jbhi.2016.2636665
5. Antczak K. Uczenie głębokie w diagnostyce medycznej. Symulacja w Badaniach i Rozwoju, 2016:7(3-4).
6. Patel VL, Shortliffe EH, Stefanelli M, Szolovits P, Berthold MR, Bellazzi R, et al. The coming of age of artificial intelligence in medicine. Artif Intell Med. 2009;46(1):5-17. https://doi.org/10.1016/j.artmed.2008.07.017
7. Bedi G, Carrillo F, Cecchi GA, Slezak DF, Sigman M, Mota NB, et al. Automated analysis of free speech predicts psychosis onset in high-risk youths. NPJ Schizophr, 2015;1:15030. https://doi.org/10.1038/npjschz.2015.30
8. Elvevåg B, Foltz PW, Rosenstein M, Delisi LE. An automated method to analyze language use in patients with schizophrenia and their first-degree relatives. J Neurolinguistics, 2010; 23(3):270-284. https://doi.org/10.1016/j.jneuroling.2009.05.002
9. Angermeyer MC, Kuhn L, Goldstein JM. Gender and the course of schizophrenia: differences in treated outcome. Schizophr Bull, 1990; 16:293-307. https://doi.org/10.1093/schbul/16.2.293
10. Nagarhalli TP, Vaze V, Rana NK. Impact of Machine Learning in Natural Language Processing: A Review. In proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV). Tirunelveli. India, 2021; 4:1529-1534. https://doi.org/10.1109/icicv50876.2021.9388380
11. Bae YJ, Shim M, Lee WH. Schizophrenia Detection Using Machine Learning Approach from Social Media Content. Sensors (Basel), 2021; 21(17):5924. https://doi.org/10.3390/s21175924
12. Thorstad R, Wolff P. Predicting future mental illness from social media: A big-data approach. Behav Res Methods, 2019; 51:1586-1600. https://doi.org/10.3758/s13428-019-01235-z
13. Birnbaum ML, Norel R, Van Meter A, Ali AF, Arenare E, Eyigoz E, et al. Identifying signals associated with psychiatric illness utilizing language and images posted to Facebook. NPJ Schizophr. 2020; 3(1):38. https://doi.org/10.1038/s41537-020-00125-0
14. Mitchell M, Hollingshead K, Coppersmith G. Quantifying the Language of Schizophrenia in Social Media; Association for Computational Linguistics: Denver, CO, USA, 2015; 11-20. https://doi.org/10.3115/v1/w15-1202
15. Glen Coppersmith, Mark Dredze, Craig Harman, and Kristy Hollingshead. From ADHD to SAD: Analyzing the Language of Mental Health on Twitter through Self-Reported Diagnoses. In Proceedings of the 2nd Workshop on Computational Linguistics and Clinical Psychology: From Linguistic Signal to Clinical Reality, Denver, CO, 2015, Association for Computational Linguistics. https://doi.org/10.3115/v1/w15-1201
16. Salvador R, Canales-Rodríguez E, Guerrero-Pedraza A, Sarró S, Tordesillas-Gutiérrez D, Maristany T et al. Multimodal Integration of Brain Images for MRI-Based Diagnosis in Schizophrenia. Front Neurosci, 2019; 13: 1203. https://doi.org/10.3389/fnins.2019.01203
17. de Filippis R, Carbone EA, Gaetano R, Bruni A, Pugliese V, Segura-Garcia C et al. Machine learning techniques in a structural and functional MRI diagnostic approach in schizophrenia: a systematic review. Neuropsychiatr Dis Treat, 2019; 19:1605-1627. https://doi.org/10.2147/ndt.s202418
18. Shi D, Li Y, Zhang H, Yao X, Wang S, Wang G, Ren K. Machine Learning of Schizophrenia Detection with Structural and Functional Neuroimaging. Dis Markers, 2021; 9:9963824. https://doi.org/10.1155/2021/9963824
19. Zhu L, Wu X, Xu B, Zhao Z, Yang J, Long J, Su L. The machine learning algorithm for the diagnosis of schizophrenia on the basis of gene expression in peripheral blood. Neurosci Lett, 2021; 6;745:135596. https://doi.org/10.1016/j.neulet.2020.135596
20. Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatry, 2007; 164(6):942-8. https://doi.org/10.1176/ajp.2007.164.6.942
21. Wender PH. Attention-deficit hyperactivity disorder in adults. Psychiatric Clinics of North America, 1998; 21:761-774. https://doi.org/10.1016/s0193-953x(05)70039-3
22. Drigas AS, Joannidou RE. A review on artificial intelligence in special education. World Summit on Knowledge Society, 2011; 385-391.
23. Christiansen H, Chavanon ML, Hirsch O, Schmidt MH, Meyer C, Müller A et al. Use of machine learning to classify adult ADHD and other conditions based on the Conners' Adult ADHD Rating Scales. Sci Rep, 2020; 2;10(1):18871. https://doi.org/10.1038/s41598-020-75868-y
24. Mueller A, Candrian G, Kropotov JD, Ponomarev VA, Baschera GM. Classification of ADHD patients on the basis of independent ERP components using a machine learning system. Nonlinear Biomed Phys, 2010; 3;4(1):1. https://doi.org/10.1186/1753-4631-4-s1-s1
25. Tenev A, Markovska-Simoska S, Kocarev L, Pop-Jordanov J, Müller A, Candrian G. Machine learning approach for classification of ADHD adults. Int J Psychophysiol, 2014; 93(1):162-6. https://doi.org/10.1016/j.ijpsycho.2013.01.008
26. Wiltfang J, Esselmann H, Barnikol UB. The Use of Artificial Intelligence in Alzheimer's Disease -Personalized Diagnostics and Therapy. Psychiatr Prax, 2021; 48(1):31-36.
27. Wall DP, Kosmicki J, Deluca TF, Harstad E, Fusaro VA. Use of machine learning to shorten observation-based screening and diagnosis of autism. Transl Psychiatry, 2012; 10:2(4)100. https://doi.org/10.1038/tp.2012.10
28. Bertoncelli CM, Altamura P, Vieira ER, Bertoncelli D, Solla F. Using Artificial Intelligence to Identify Factors Associated with Autism Spectrum Disorder in Adolescents with Cerebral Palsy. Neuropediatrics, 2019; 50(3):178-187. https://doi.org/10.1055/s-0039-1685525
29. Choi ES, Yoo HJ, Kang MS, Kim SA. Applying Artificial Intelligence for Diagnostic Classification of Korean Autism Spectrum Disorder. Psychiatry Investig, 2020; 17(11):1090-1095. https://doi.org/10.30773/pi.2020.0211
30. Wall DP, Dally R, Luyster R, Jung JY, Deluca TF. Use of artificial intelligence to shorten the behavioral diagnosis of autism. PLoS One, 2012; 7:43855. https://doi.org/10.1371/journal.pone.0043855
31. Andrade E, Portela S, Pinheiro PR, Nunes LC, Filho MS, Costa WS et al. A Protocol for the Diagnosis of Autism Spectrum Disorder Structured in Machine Learning and Verbal Decision Analysis. Comput Math Methods Med, 2021; 30:1628959. https://doi.org/10.1155/2021/1628959
32. Lavagnino L, Amianto F, Mwangi B, D'Agata F, Spalatro A, Zunta-Soares GB et al. Identifying neuroanatomical signatures of anorexia nervosa: a multivariate machine learning approach. Psychol Med, 2015; 45(13):2805-12. https://doi.org/10.1017/s0033291715000768
33. Brunn M, Diefenbacher A, Courtet P, Genieys W. The Future is Knocking: How Artificial Intelligence Will Fundamentally Change Psychiatry. Acad Psychiatry, 2020; 44(4):461-466. https://doi.org/10.1007/s40596-020-01243-8
34. Fitzpatrick KK, Darcy A, Vierhile M. Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): a randomized controlled trial. JMIR Ment Health, 2017; 06:4(2):19. https://doi.org/10.2196/mental.7785
35. Sachan D. Self-help robots drive blues away. Lancet Psychiatry, 2018; 5(7):547. https://doi.org/10.1016/s2215-0366(18)30230-x
36. Fiske A, Henningsen P, Buyx A. Your Robot Therapist Will See You Now: Ethical Implications of Embodied Artificial Intelligence in Psychiatry. Psychology, and Psychotherapy, J Med Internet Res, 2019; 9:21(5):13216. https://doi.org/10.2196/13216
37. Fulmer R, Joerin A, Gentile B, Lakerink L, Rauws M. Using Psychological Artificial Intelligence (Tess) to Relieve Symptoms of Depression and Anxiety: Randomized Controlled Trial. JMIR Ment Health, 2018; 13:5(4):64. https://doi.org/10.2196/mental.9782
38. Warren Z, Zheng Z, Das S, Young EM, Swanson A, Weitlauf A, Sarkar N. Brief Report: Development of a Robotic Intervention Platform for Young Children with ASD. J Autism Dev, Disord, 2015; 45(12):3870-6. https://doi.org/10.1007/s10803-014-2334-0
39. Petersen S, Houston S, Qin H, Tague C, Studley J. The Utilization of Robotic Pets in Dementia Care. J Alzheimers Dis, 2017; 55(2):569-574. https://doi.org/10.3233/jad-160703
40. Leff J, Williams G, Huckvale MA, Arbuthnot M, Leff AP. Computer-assisted therapy for medication-resistant auditory hallucinations: proof-of-concept study. Br J Psychiatry, 2013; 202:428-33. https://doi.org/10.1192/bjp.bp.112.124883
41. Johns LC, Hemsley D, Kuipers E. A comparison of auditory hallucinations in a psychiatric and non-psychiatric group. British Journal of Clinical Psychology, 2002; 41(1):81-86. https://doi.org/10.1348/014466502163813
42. Dellazizzo L, Percie du Sert O, Phraxayavong K, Potvin S, O'Connor K, Dumais A. Exploration of the dialogue components in Avatar Therapy for schizophrenia patients with refractory auditory hallucinations: A content analysis, Clin. Psychol. Psychother, 2018; 25(6):878-885. https://doi.org/10.1002/cpp.2322
43. Craig TK, Rus-Calafell M, Ward T, Leff JP, Huckvale M, Howarth E, et al. AVATAR therapy for auditory verbal hallucinations in people with psychosis: a single-blind, randomised controlled trial. Lancet Psychiatry, 2018; 5(1):31-40. https://doi.org/10.1016/s2215-0366(17)30427-3
44. Saleh MA, Hanapiah FA, Hashim H. Robot applications for autism: a comprehensive review. Disabil Rehabil Assist Technol, 2021; 16(6):580-602.
45. Scassellati B, Admoni H, Matarić M. Robots for use in autism research. Annu Rev Biomed Eng, 2012; 14:275-94. https://doi.org/10.1146/annurev-bioeng-071811-150036
46. Feil-Seifer D, Matarić MJ. Defining socially assistive robotics. Proc. IEEE 9th Int Conf Rehabil Robot, 2005; 28:465-68.
47. Kozima H, Nakagawa C, Yasuda Y. Interactive robots for communication-care: a case-study in autism therapy. Proc 14th IEEE Int Workshop Robot Hum Interact Commun, 2005; 13:341-46. https://doi.org/10.1109/roman.2005.1513802
48. Woźniacka A, Patrzyk S, Mikołajczyk M. Artificial intelligence in medicine and dermatology. Postepy Dermatol Alergol, 2021; 38(6):948-952. https://doi.org/10.5114/ada.2020.101259
49. Ohio State University. Virtual patient: Avatar shows emotions as he talks to med students. ScienceDaily, 25 February 2015.
50. Ienca M, Wangmo T, Jotterand F, Kressig RW, Elger B. Ethical design of intelligent assistive technologies for dementia: a descriptive review. Sci Eng Ethics, 2018; 24(4):1035-1055. https://doi.org/10.1007/s11948-017-9976-1
51. Rein BA, McNeil DW, Hayes AR, Hawkins TA, Ng HM, Yura CA. Evaluation of an avatar-based training program to promote suicide prevention awareness in a college setting. J Am Coll Health, 2018; 66(5):401-411. https://doi.org/10.1080/07448481.2018.1432626
52. Wada K, Shibata T. Living with seal robots its sociopsychological and physiological influences on the elderly at a care house. IEEE Trans Robot, 2007; 23(5):972-980. https://doi.org/10.1109/tro.2007.906261
53. D'Alfonso S, Santesteban-Echarri O, Rice S, Wadley G, Lederman R, Miles C et al. Artificial Intelligence-Assisted Online Social Therapy for Youth Mental Health. Front Psychol, 2017; 2;8:796. https://doi.org/10.3389/fpsyg.2017.00796
54. Mehta A, Niles AN, Vargas JH, Marafon T, Couto DD, Gross JJ. Acceptability and Effectiveness of Artificial Intelligence Therapy for Anxiety and Depression (Youper): Longitudinal Observational Study. J Med Internet Res, 2021; 22;23(6):26771. https://doi.org/10.2196/26771
55. Jenkins AL, Singer J, Conner BT, Calhoun S, Diamond G. Risk for suicidal ideation and attempt among a primary care sample of adolescents engaging in nonsuicidal self-injury. Suicide Life Threat Behav, 2014; 44(6):616-28. https://doi.org/10.1111/sltb.12094
56. Song J, Song TM, Seo DC, Jin JH. Data Mining of Web-Based Documents on Social Networking Sites That Included Suicide-Related Words Among Korean Adolescents. J Adolesc Health, 2016 ;59(6):668-673. https://doi.org/10.1016/j.jadohealth.2016.07.025
57. Ma-Kellams C, Or F, Baek JH, Kawachi I. Rethinking suicide surveillance: Google search data and self-reported suicidality differentially estimate completed suicide risk. Clinical Psychological Science, 2016; 4:480-484. https://doi.org/10.1177/2167702615593475
58. Ryu S, Lee H, Lee DK, Park K. Use of a Machine Learning Algorithm to Predict Individuals with Suicide Ideation in the General Population. Psychiatry Investig, 2018; 15(11):1030-1036. https://doi.org/10.30773/pi.2018.08.27
59. Liu Y, Sareen J, Bolton JM, Wang JL. Development and validation of a risk prediction algorithm for the recurrence of suicidal ideation among general population with low mood. J Affect Disord, 2016; 15;193:11-7. https://doi.org/10.1016/j.jad.2015.12.072
60. Jordan P, Shedden-Mora MC, Lowe B. Predicting suicidal ideation in primary care: An approach to identify easily assessable key variables. General Hospital Psychiatry, 2018; 51:106-111. https://doi.org/10.1016/j.genhosppsych.2018.02.002
61. de Ávila Berni G, Rabelo-da-Ponte FD, Librenza-Garcia D, Boeira MV, Kauer-Sant'Anna M, Passos IC et al. Potential use of text classification tools as signatures of suicidal behavior: A proof¬of-concept study using Virginia Woolf's personal writings. PLoS One, 2018; 24;13(10):0204820. https://doi.org/10.1371/journal.pone.0207963
62. Pestian J, Nasrallah H, Matykiewicz P, Bennett A, Leenaars Suicide Note Classification Using Natural Language Processing: A Content Analysis. Biomed Inform Insights, 2010; 4;2010(3):19-28. https://doi.org/10.4137/bii.s4706
63. Cherry C, Mohammad SM, de Bruijn B. Binary classifiers and latent sequence models for emotion detection in suicide notes. Biomed Inform Insights, 2012; 5(1):147-54. https://doi.org/10.4137/bii.s8933
64. Spasić I, Burnap P, Greenwood M, Arribas-Ayllon M. A naïve bayes approach to classifying topics in suicide notes. Biomed Inform Insights, 2012; 5(1):87-97. https://doi.org/10.4137/bii.s8945
65. Mehta A, Niles AN, Vargas JH, Marafon T, Couto DD, Gross JJ. Acceptability and Effectiveness of Artificial Intelligence Therapy for Anxiety and Depression (Youper): Longitudinal Observational Study. J Med Internet Res, 2021; 22;23(6):e26771. https://doi.org/10.2196/26771
66. Jeste DV, Graham SA, Nguyen TT, Depp CA, Lee EE, Kim HC. Beyond artificial intelligence: exploring artificial wisdom. Int Psychogeriatr, 2020; 32(8):993-1001. https://doi.org/10.1017/s1041610220000927
67. Carroll KM, Rounsaville BJ. Computer-assisted therapy in psychiatry: be brave-it’s a new world. Curr Psychiatry Rep, 2010; 12(5):426-32. https://doi.org/10.1007/s11920-010-0146-2
68. Fiske A, Henningsen P, Buyx A. Your Robot Therapist Will See You Now: Ethical Implications of Embodied Artificial Intelligence in Psychiatry, Psychology, and Psychotherapy. J Med Internet Res, 2019; 9:21(5):13216. https://doi.org/10.2196/13216
69. Torous J, Bucci S, Bell IH, Kessing LV, Faurholt-Jepsen M, Whelan P et al. The growing field of digital psychiatry: current evidence and the future of apps, social media, chatbots, and virtual reality. World Psychiatry, 2021; 20(3):318-335. https://doi.org/10.1002/wps.20883
70. Henson P, Wisniewski H, Hollis C, Keshavan M, Torous J. Digital mental health apps and the therapeutic alliance: initial review. BJPsych Open, 2019; 5(1):15. https://doi.org/10.1192/bjo.2018.86
71. Tremain H, McEnery C, Fletcher K, Murray G. The Therapeutic Alliance in Digital Mental Health Interventions for Serious Mental Illnesses: Narrative Review. JMIR Ment Health, 2020; 7;7(8):17204. https://doi.org/10.2196/17204
72. Frank AF, Gunderson JG. The role of the therapeutic alliance in the treatment of schizophrenia. Relationship to course and outcome. Arch Gen Psychiatry, 1990; 47:228-36. https://doi.org/10.1001/archpsyc.1990.01810150028006
73. Lucas GM, Gratch J, King A, Morency L. It's only a computer: Virtual humans increase willingness to disclose. Comput Hum Behav, 2014; 37, 94-100. https://doi.org/10.1016/j.chb.2014.04.043
74. Erden YJ, Hummerstone H, Rainey S. Automating autism assessment: What AI can bring to the diagnostic process. J Eval Clin Pract, 2021; 27(3):485-490. https://doi.org/10.1111/jep.13527
75. Fiske A, Henningsen P, Buyx A. Your Robot Therapist Will See You Now: Ethical Implications of Embodied Artificial Intelligence in Psychiatry. Psychology, and Psychotherapy J Med Internet Res, 2019; 9:21(5):13216. https://doi.org/10.2196/13216
76. Stix C. 3 ways AI could help our mental health. World Economic Forum. 2018.
77. Houston TK, Cooper LA, Ford DE. Internet support groups for depression: a 1-year prospective cohort study. Am J Psychiatry, 2002; 159(12):2062-8. https://doi.org/10.1176/appi.ajp.159.12.2062
78. Gionet K. Meet Tess: the mental health chatbot that thinks like a therapist. The Guardian, 2018; 79.
79. Graham SA, Lee EE, Jeste DV, Van Patten R, Twamley EW, Nebeker C et al. Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Res, 2020; 284:112732. https://doi.org/10.1016/j.psychres.2019.112732
80. Carroll KM, Rounsaville BJ. Computer-assisted therapy in psychiatry: be brave-it’s a new world. Curr Psychiatry Rep, 2010; 12(5):426-32. https://doi.org/10.1007/s11920-010-0146-2
81. American Academy of Child and Adolescent Psychiatry: Practice parameters for the assessment and treatment of children and adolescents with depressive disorders. J Am Acad Child Adolesc Psychiatry, 1998; 37(10):63-83. https://doi.org/10.1097/00004583-199810001-00005
82. Vandemeulebroucke T, Dierckx de Casterlé B, Gastmans C. The use of care robots in aged care: a systematic review of argument-based ethics literature. Arch Gerontol Geriatr, 2018; 74:15-25. https://doi.org/10.1016/j.archger.2017.08.014
83. Sachan D. Self-help robots drive blues away. Lancet Psychiatry, 2018; 5(7):547. https://doi.org/10.1016/s2215-0366(18)30230-x
84. Johnston A. Robotic seals comfort dementia patients but raise ethical concerns. KALW Local Public Radio. 2015.
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.