Neuroprotective factors in schizophrenia: BDNF, NGF, NT3, GDNF and their connection to the pathogenesis of schizophrenia. A narrative review
DOI:
https://doi.org/10.12923/2353-8627/2023-0010Keywords:
schizophrenia, brain-derived neurotrophic factor, nerve growth factor, neurotrophin 3, glial cell line-derived neurotrophic factorAbstract
Introduction: There are several hypotheses of schizophrenia pathogenesis, including the neurodegenerative theory, which is supported by evidence for the decrease of neuroprotective factors’ serum levels. The proteins, that exert a protective effect on neurons and are researched concerning schizophrenia pathogenesis, include the brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin 3 (NT3), and glial cell line-derived neurotrophic factor (GDNF). This review aims to discuss the role of neuroprotective factors in the development of schizophrenia and their relevance in clinical trials.
Material and methods: This review was performed by search of the PubMed, Google Scholar, and Science Direct databases from December 25th, 2022, through January 31st, 2023, using keywords: ‘schizophrenia’, ‘schizophrenia pathogenesis’, ‘neuroprotection’, ‘neurodegeneration’, ‘BDNF’, ‘NGF’, ‘NT3’, and ‘GDNF’. We considered original research papers and systematic reviews published in English or Polish. Additionally, clinical trials, which included the assessment of neuroprotective factors’ levels in schizophrenia as outcome measures, were searched for on clinicaltrials.gov.
Results: Lower levels of serum BDNF have been linked to cognitive impairment in schizophrenia. In clinical trials, the assessment of serum BDNF is used as a clinical outcome measure for novel schizophrenia therapies. Schizophrenia has also been associated with reduced peripheral NGF levels. During remission, lower NGF levels correlate with higher severity of negative symptoms. Decreased NT3 and GDNF levels can also be seen, but literature reports are inconsistent.
Conclusions: Neuroprotective factors are most likely related to the pathogenesis of schizophrenia. Assessing the serum level of these proteins may prove to be an invaluable element of schizophrenia management.
References
1. WHO. International statistical classification of diseases and related health problems (11th Revision). https://icd.who.int/en Accessed on January 31st, 2023.
2. Gaebel W, Kerst A, Stricker J. Classification and diagnosis of schizophrenia or other primary psychotic disorders: Changes from icd-10 to icd-11 and implementation in clinical practice. Psychiatr Danub. 2020;32(3-4):320-324. https://doi.org/10.31219/osf.io/zv79p
3. Yang AC, Tsai SJ. New Targets for Schizophrenia Treatment beyond the Dopamine Hypothesis. Int J Mol Sci. 2017;18(8).
4. Uno Y, Coyle JT. Glutamate hypothesis in schizophrenia. Psychiatry Clin Neurosci. 2019;73(5):204-15.
5. Wassef A, Baker J, Kochan LD. GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol. 2003;23(6):601-40. https://doi.org/10.1097/01.jcp.0000095349.32154.a5
6. Abi-Dargham A. Alterations of serotonin transmission in schizophrenia. Int Rev Neurobiol. 2007;78:133-64.
7. Müller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr Bull. 2018;44(5):973-82.
8. Prestwood TR, Asgariroozbehani R, Wu S, Agarwal SM, Logan RW, Ballon JS, et al. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav Brain Res. 2021;402:113101. https://doi.org/10.1016/j.bbr.2020.113101
9. Pino O, Guilera G, Gómez-Benito J, Najas-García A, Rufián S, Rojo E. Neurodevelopment or neurodegeneration: review of theories of schizophrenia. Actas Esp Psiquiatr. 2014;42(4):185-95.
10. Archer T. Neurodegeneration in schizophrenia. Expert Rev Neurother. 2010;10(7):1131-41.
11. Stone WS, Phillips MR, Yang LH, Kegeles LS, Susser ES, Lieberman JA. Neurodegenerative model of schizophrenia: Growing evidence to support a revisit. Schizophr Res. 2022;243:154-62. https://doi.org/10.1016/j.schres.2022.03.004
12. Pérez-Neri I, Ramírez-Bermúdez J, Montes S, Ríos C. Possible mechanisms of neurodegeneration in schizophrenia. Neurochem Res. 2006;31(10):1279-94. https://doi.org/10.1007/s11064-006-9162-3
13. Rund BR. Is schizophrenia a neurodegenerative disorder? Nord J Psychiatry. 2009;63(3):196-201.
14. Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D, et al. Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatry. 2001;49(6):487-99. https://doi.org/10.1016/s0006-3223(01)01067-8
15. Oestreich LKL, Lyall AE, Pasternak O, Kikinis Z, Newell DT, Savadjiev P, et al. Characterizing white matter changes in chronic schizophrenia: A free-water imaging multi-site study. Schizophr Res. 2017;189:153-61.
16. Chung JK, Nakajima S, Plitman E, Iwata Y, Uy D, Gerretsen P, et al. Β-Amyloid Burden is Not Associated with Cognitive Impairment in Schizophrenia: A Systematic Review. Am J Geriatr Psychiatry. 2016;24(10):923-39. https://doi.org/10.1016/j.jagp.2016.03.013
17. Gupta S, Kulhara P. What is schizophrenia: A neurodevelopmental or neurodegenerative disorder or a combination of both? A critical analysis. Indian J Psychiatry. 2010;52(1):21-7. https://doi.org/10.4103/0019-5545.58891
18. Jonas K, Lian W, Callahan J, Ruggero CJ, Clouston S, Reichenberg A, et al. The Course of General Cognitive Ability in Individuals With Psychotic Disorders. JAMA Psychiatry. 2022;79(7):659-66. https://doi.org/10.1001/jamapsychiatry.2022.1142
19. Kochunov P, Hong LE. Neurodevelopmental and neurodegenerative models of schizophrenia: white matter at the center stage. Schizophr Bull. 2014;40(4):721-8. https://doi.org/10.1093/schbul/sbu070
20. Rapoport JL, Gogtay N. Childhood onset schizophrenia: support for a progressive neurodevelopmental disorder. Int J Dev Neurosci. 2011;29(3):251-8. https://doi.org/10.1016/j.ijdevneu.2010.10.003
21. Pandya CD, Kutiyanawalla A, Pillai A. BDNF-TrkB signaling and neuroprotection in schizophrenia. Asian J Psychiatr. 2013;6(1):22-8. https://doi.org/10.1016/j.ajp.2012.08.010
22. Ciafrè S, Ferraguti G, Tirassa P, Iannitelli A, Ralli M, Greco A, et al. Nerve growth factor in the psychiatric brain. Riv Psichiatr. 2020;55(1):4-15.
23. Moghaddam AH, Maboudi K, Bavaghar B, Sangdehi SRM, Zare M. Neuroprotective effects of curcumin-loaded nanophytosome on ketamine-induced schizophrenia-like behaviors and oxidative damage in male mice. Neurosci Lett. 2021;765:136249.
24. https://doi.org/10.1016/j.neulet.2021.136249
25. Miyake N, Miyamoto S, Yamashita Y, Ninomiya Y, Tenjin T, Yamaguchi N. Effects of N-Acetylcysteine on Cognitive Functions in Subjects With an At-Risk Mental State: A Case Series. J Clin Psychopharmacol. 2016;36(1):87-8. https://doi.org/10.1097/jcp.0000000000000445
26. Khan MM. Neurocognitive, Neuroprotective, and Cardiometabolic Effects of Raloxifene: Potential for Improving Therapeutic Outcomes in Schizophrenia. CNS Drugs. 2016;30(7):589-601. https://doi.org/10.1007/s40263-016-0343-6
27. Krebs M, Leopold K, Hinzpeter A, Schaefer M. Neuroprotective agents in schizophrenia and affective disorders. Expert Opin Pharmacother. 2006;7(7):837-48. https://doi.org/10.1517/14656566.7.7.837
28. Lu B, Martinowich K. Cell biology of BDNF and its relevance to schizophrenia. Novartis Found Symp. 2008;289:119-29; discussion 29-35, 93-5. https://doi.org/10.1002/9780470751251.ch10
29. Favalli G, Li J, Belmonte-de-Abreu P, Wong AH, Daskalakis ZJ. The role of BDNF in the pathophysiology and treatment of schizophrenia. J Psychiatr Res. 2012;46(1):1-11. https://doi.org/10.1016/j.jpsychires.2011.09.022
30. Di Carlo P, Punzi G, Ursini G. Brain-derived neurotrophic factor and schizophrenia. Psychiatr Genet. 2019;29(5):200-10. https://doi.org/10.1097/ypg.0000000000000237
31. Shoshina, II, Hovis JK, Felisberti FM, Santos NA, Adreeva A, Butler PD, et al. Visual processing and BDNF levels in firstepisode schizophrenia. Psychiatry Res. 2021;305:114200. https://doi.org/10.1016/j.psychres.2021.114200
32. Singh J, Verma R, Raghav R, Sarkar S, Sood M, Jain R. Brainderived neurotrophic factor (BDNF) levels in first-episode schizophrenia and healthy controls: A comparative study. Asian J Psychiatr. 2020;54:102370. https://doi.org/10.1016/j.ajp.2020.102370
33. Bora E. Peripheral inflammatory and neurotrophic biomarkers of cognitive impairment in schizophrenia: a meta-analysis. Psychol Med. 2019;49(12):1971-9. https://doi.org/10.1017/s0033291719001685
34. Zhu X, Chen D, Xiu M, Li S, Zhang XY. Serum BDNF levels, glycolipid metabolism in deficit schizophrenia: A case-control study. Asian J Psychiatr. 2022;69:103003.
35. https://doi.org/10.1016/j.ajp.2022.103003
36. Ahmed AO, Mantini AM, Fridberg DJ, Buckley PF. Brain-derived neurotrophic factor (BDNF) and neurocognitive deficits in people with schizophrenia: a meta-analysis. Psychiatry Res. 2015;226(1):1-13. https://doi.org/10.1016/j.psychres.2014.12.069
37. Han M, Deng C. BDNF as a pharmacogenetic target for antipsychotic treatment of schizophrenia. Neurosci Lett. 2020;726:133870. 36. Notaras M, Hill R, van den Buuse M. A role for the BDNF gene Val66Met polymorphism in schizophrenia? A comprehensive review. Neurosci Biobehav Rev. 2015;51:15-30. https://doi.org/10.1016/j.neubiorev.2014.12.016
38. Zhang XY, Chen DC, Tan YL, Tan SP, Luo X, Zuo L, et al. BDNF polymorphisms are associated with schizophrenia onset and positive symptoms. Schizophr Res. 2016;170(1):41-7. https://doi.org/10.1016/j.schres.2015.11.009
39. Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421-7.
40. Çöpoğlu Ü S, Igci M, Bozgeyik E, Kokaçya MH, İğci YZ, Dokuyucu R, et al. DNA Methylation of BDNF Gene in Schizophrenia. Med Sci Monit. 2016;22:397-402. https://doi.org/10.12659/msm.895896
41. Cheah SY, McLeay R, Wockner LF, Lawford BR, Young RM, Morris CP, et al. Expression and methylation of BDNF in the human brain in schizophrenia. World J Biol Psychiatry. 2017;18(5):392- 400. https://doi.org/10.1080/15622975.2016.1245443
42. Harb M, Jagusch J, Durairaja A, Endres T, Leßmann V, Fendt M. BDNF haploinsufficiency induces behavioral endophenotypes of schizophrenia in male mice that are rescued by enriched environment. Transl Psychiatry. 2021;11(1):233. https://doi.org/10.1038/s41398-021-01365-z
43. Angelucci F, Brenè S, Mathé AA. BDNF in schizophrenia, depression and corresponding animal models. Mol Psychiatry. 2005;10(4):345-52. https://doi.org/10.1038/sj.mp.4001637
44. Markiewicz R, Markiewicz-Gospodarek A, Dobrowolska B, Łoza B. Improving Clinical, Cognitive, and Psychosocial Dysfunctions in Patients with Schizophrenia: A Neurofeedback Randomized Control Trial. Neural Plast. 2021;2021:4488664. https://doi.org/10.1155/2021/4488664
45. Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res. 2018;265:25-38. https://doi.org/10.1016/j.psychres.2018.04.036
46. Nandra KS, Agius M. The differences between typical and atypical antipsychotics: the effects on neurogenesis. Psychiatr Danub. 2012;24 Suppl 1:S95-9.
47. Peng S, Li W, Lv L, Zhang Z, Zhan X. BDNF as a biomarker in diagnosis and evaluation of treatment for schizophrenia and depression. Discov Med. 2018;26(143):127-36.
48. Libman-Sokołowska M, Drozdowicz E, Nasierowski T. BDNF as a biomarker in the course and treatment of schizophrenia. Psychiatr Pol. 2015;49(6):1149-58. https://doi.org/10.12740/pp/37705
49. Markiewicz R, Kozioł M, Olajossy M, Masiak J. Can brainderived neurotrophic factor (BDNF) be an indicator of effective rehabilitation interventions in schizophrenia? Psychiatr Pol. 2018;52(5):819-34. https://doi.org/10.12740/pp/onlinefirst/76040
50. Martínez-Pinteño A, Mezquida G, Bioque M, López-Ilundain JM, Andreu-Bernabeu Á, Zorrilla I, et al. The role of BDNF and NGF plasma levels in first-episode schizophrenia: A longitudinal study. Eur Neuropsychopharmacol. 2022;57:105-17. https://doi.org/10.1016/j.euroneuro.2022.02.003
51. Pillai A, Schooler NR, Peter D, Looney SW, Goff DC, Kopelowicz A, et al. Predicting relapse in schizophrenia: Is BDNF a plausible biological marker? Schizophr Res. 2018;193:263-8. https://doi.org/10.1016/j.schres.2017.06.059
52. Shi XJ, Du Y, Lei C, Li XS, Yao CQ, Cheng Y. Effects of brain-derived neurotrophic factor (BDNF) on the Schizophrenia model of animals. J Psychiatr Res. 2022;156:538-46. https://doi.org/10.1016/j.jpsychires.2022.10.022
53. Xu Y, Deng C, Zheng Y, Liu N, Fu B. Applying vinpocetine to reverse synaptic ultrastructure by regulating BDNF-related PSD-95 in alleviating schizophrenia-like deficits in rat. Compr Psychiatry. 2019;94:152122. https://doi.org/10.1016/j.comppsych.2019.152122
54. Jena M, Ranjan R, Mishra BR, Mishra A, Nath S, Sahu P, et al. Effect of lurasidone vs olanzapine on neurotrophic biomarkers in unmedicated schizophrenia: A randomized controlled trial. J Psychiatr Res. 2019;112:1-6. https://doi.org/10.1016/j.jpsychires.2019.11.019
55. Jena M, Ranjan R, Mishra BR, Mishra A, Nath S, Sahu P, et al. Corrigendum to "Effect of lurasidone vs olanzapine on neurotrophic biomarkers in unmedicated schizophrenia: A randomized controlled trial" [J. Psychiatr. Res. 112 (2019) 1-6]. J Psychiatr Res. 2020;126:141. https://doi.org/10.1016/j.jpsychires.2019.11.019
56. Wynn JK, Green MF, Hellemann G, Karunaratne K, Davis MC, Marder SR. The effects of curcumin on brain-derived neurotrophic factor and cognition in schizophrenia: A randomized controlled study. Schizophrenia Research. 2018;195:572-3. https://doi.org/10.1016/j.schres.2017.09.046
57. Nuechterlein KH, McEwen SC, Ventura J, Subotnik KL, Turner LR, Boucher M, et al. Aerobic exercise enhances cognitive training effects in first-episode schizophrenia: randomized clinical trial demonstrates cognitive and functional gains. Psychological Medicine. 2022:1-11. https://doi.org/10.1017/s0033291722001696
58. Penadés R, López-Vílchez I, Catalán R, Arias B, González- Rodríguez A, García-Rizo C, et al. BDNF as a marker of response to cognitive remediation in patients with schizophrenia: A randomized and controlled trial. Schizophrenia Research. 2018;197:458-64. https://doi.org/10.1016/j.schres.2017.12.002
59. Strzelecki D, Kałużyńska O, Wysokiński A. BDNF serum levels in schizophrenic patients during treatment augmentation with sarcosine (results of the PULSAR study). Psychiatry Res. 2016;242:54-60. https://doi.org/10.1016/j.psychres.2016.05.019
60. Mendes Filho VA. Efeitos da estimulação magnética transcraniana para sintomas obsessivo-compulsivos em pacientes com esquizofrenia 2016. https://doi.org/10.11606/d.5.2006.tde-04042007-102634
61. Psomiades M, Mondino M, Galvão F, Mandairon N, Nourredine M, Suaud-Chagny M-F, et al. Serum Mature BDNF Level Is Associated with Remission Following ECT in Treatment- Resistant Depression. Brain Sciences. 2022;12(2):126. https://doi.org/10.3390/brainsci12020126
62. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK. GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther. 2013;138(2):155-75. https://doi.org/10.1016/j.pharmthera.2013.01.004
63. Zakharyan R, Atshemyan S, Gevorgyan A, Boyajyan A. Nerve growth factor and its receptor in schizophrenia. BBA Clin. 2014;1:24-9. https://doi.org/10.1016/j.bbacli.2014.05.001
64. Qin XY, Wu HT, Cao C, Loh YP, Cheng Y. A meta-analysis of peripheral blood nerve growth factor levels in patients with schizophrenia. Mol Psychiatry. 2017;22(9):1306-12. https://doi.org/10.1038/mp.2016.235
65. Rao S, Martínez-Cengotitabengoa M, Yao Y, Guo Z, Xu Q, Li S, et al. Peripheral blood nerve growth factor levels in major psychiatric disorders. J Psychiatr Res. 2017;86:39-45. https://doi.org/10.1016/j.jpsychires.2016.11.012
66. Çakici N, Sutterland AL, Penninx B, Dalm VA, de Haan L, van Beveren NJM. Altered peripheral blood compounds in drugnaïve first-episode patients with either schizophrenia or major depressive disorder: a meta-analysis. Brain Behav Immun. 2020;88:547-58. https://doi.org/10.1016/j.bbi.2020.04.039
67. Rodrigues-Amorim D, Rivera-Baltanás T, Bessa J, Sousa N, Vallejo-Curto MC, Rodríguez-Jamardo C, et al. The neurobiological hypothesis of neurotrophins in the pathophysiology of schizophrenia: A meta-analysis. J Psychiatr Res. 2018;106:43-53. https://doi.org/10.1016/j.jpsychires.2018.09.007
68. Neugebauer K, Hammans C, Wensing T, Kumar V, Grodd W, Mevissen L, et al. Nerve Growth Factor Serum Levels Are Associated With Regional Gray Matter Volume Differences in Schizophrenia Patients. Front Psychiatry. 2019;10:275. https://doi.org/10.3389/fpsyt.2019.00275
69. Xiong P, Zeng Y, Wan J, Xiaohan DH, Tan D, Lu J, et al. The role of NGF and IL-2 serum level in assisting the diagnosis in first episode schizophrenia. Psychiatry Res. 2011;189(1):72-6. https://doi.org/10.1016/j.psychres.2010.12.017
70. Lazar NL, Rajakumar N, Cain DP. Injections of NGF into neonatal frontal cortex decrease social interaction as adults: a rat model of schizophrenia. Schizophr Bull. 2008;34(1):127-36. https://doi.org/10.1093/schbul/sbm039
71. Hernández-Echeagaray E. Neurotrophin-3 modulates synaptic transmission. Vitam Horm. 2020;114:71-89.
72. Lewis MA, Hunihan L, Franco D, Robertson B, Palmer J, Laurent DR, et al. Identification and characterization of compounds that potentiate NT-3-mediated Trk receptor activity. Mol Pharmacol. 2006;69(4):1396-404. https://doi.org/10.1124/mol.105.020255
73. Dai N, Jie H, Duan Y, Xiong P, Xu X, Chen P, et al. Different serum protein factor levels in first-episode drug-naive patients with schizophrenia characterized by positive and negative symptoms. Psychiatry Clin Neurosci. 2020;74(9):472-9. https://doi.org/10.1111/pcn.13078
74. Keshri N, Nandeesha H, Rajappa M, Menon V. Matrix metalloproteinase-9 increases the risk of cognitive impairment in schizophrenia. Nord J Psychiatry. 2021;75(2):130-4. https://doi.org/10.1080/08039488.2020.1808901
75. Chenniappan R, Nandeesha H, Kattimani S, Goud AC, Thiagarajan D. Risperidone Reduces Matrix Metalloproteinase-9 and Increases Neurotrophin-3 in Schizophrenia Spectrum of Disorder. Indian J Clin Biochem. 2022;37(3):342-8. https://doi.org/10.1007/s12291-021-00985-y
76. Arabska J, Łucka A, Strzelecki D, Wysokiński A. In schizophrenia serum level of neurotrophin-3 (NT-3) is increased only if depressive symptoms are present. Neurosci Lett. 2018;684:152-5 .https://doi.org/10.1016/j.neulet.2018.08.005
77. Wysokiński A. Serum levels of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in depressed patients with schizophrenia. Nord J Psychiatry. 2016;70(4):267-71. https://doi.org/10.3109/08039488.2015.1087592
78. Nimgaonkar VL, Zhang XR, Brar JS, DeLeo M, Ganguli R. Lack of association of schizophrenia with the neurotrophin-3 gene locus. Acta Psychiatr Scand. 1995;92(6):464-6. https://doi.org/10.1111/j.1600-0447.1995.tb09614.x
79. Jŏnsson E, Brené S, Zhang XR, Nimgaonkar VL, Tylec A, Schalling M, et al. Schizophrenia and neurotrophin-3 alleles. Acta Psychiatr Scand. 1997;95(5):414-9. https://doi.org/10.1111/j.1600-0447.1997.tb09654.x
80. Dawson E, Powell JF, Sham PC, Nöthen M, Crocq MA, Propping P, et al. An association study of a neurotrophin-3 (NT-3) gene polymorphism with schizophrenia. Acta Psychiatr Scand. 1995;92(6):425-8. https://doi.org/10.1111/j.1600-0447.1995.tb09607.x
81. Nanko S, Hattori M, Kuwata S, Sasaki T, Fukuda R, Dai XY, et al. Neurotrophin-3 gene polymorphism associated with schizophrenia. Acta Psychiatr Scand. 1994;89(6):390-2. https://doi.org/10.1111/j.1600-0447.1994.tb01534.x
82. Hattori M, Nanko S. Association of neurotrophin-3 gene variant with severe forms of schizophrenia. Biochem Biophys Res Commun. 1995;209(2):513-8. https://doi.org/10.1006/bbrc.1995.1531
83. Cintrón-Colón AF, Almeida-Alves G, Boynton AM, Spitsbergen JM. GDNF synthesis, signaling, and retrograde transport in motor neurons. Cell Tissue Res. 2020;382(1):47-56. https://doi.org/10.1007/s00441-020-03287-6
84. Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors - Relevance for disorders of the central nervous system. Neurobiol Dis. 2017;97(Pt B):80-9. 84. Williams HJ, Norton N, Peirce T, Dwyer S, Williams NM, Moskvina V, et al. Association analysis of the glial cell linederived neurotrophic factor (GDNF) gene in schizophrenia. Schizophr Res. 2007;97(1-3):271-6. https://doi.org/10.1016/j.schres.2007.09.004
85. Turkmen BA, Yazici E, Erdogan DG, Suda MA, Yazici AB. BDNF, GDNF, NGF and Klotho levels and neurocognitive functions in acute term of schizophrenia. BMC Psychiatry. 2021;21(1):562. https://doi.org/10.1186/s12888-021-03578-4
86. Hidese S, Hattori K, Sasayama D, Tsumagari T, Miyakawa T, Matsumura R, et al. Cerebrospinal fluid neuroplasticityassociated protein levels in patients with psychiatric disorders: a multiplex immunoassay study. Transl Psychiatry. 2020;10(1):161.
87. Chu CS, Chu CL, Wu CC, Lu T. Serum nerve growth factor beta, brain- and glial-derived neurotrophic factor levels and psychopathology in unmedicated patients with schizophrenia. J Chin Med Assoc. 2018;81(6):577-81. https://doi.org/10.1016/j.jcma.2017.11.010
88. Xiao W, Ye F, Liu C, Tang X, Li J, Dong H, et al. Cognitive impairment in first-episode drug-naïve patients with schizophrenia: Relationships with serum concentrations of brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Prog Neuropsychopharmacol Biol Psychiatry. 2017;76:163-8. https://doi.org/10.1016/j.pnpbp.2017.03.013
89. Tang X, Zhou C, Gao J, Duan W, Yu M, Xiao W, et al. Serum BDNF and GDNF in Chinese male patients with deficit schizophrenia and their relationships with neurocognitive dysfunction. BMC Psychiatry. 2019;19(1):254.
90. Tunca Z, Kıvırcık Akdede B, Özerdem A, Alkın T, Polat S, Ceylan D, et al. Diverse glial cell line-derived neurotrophic factor (GDNF) support between mania and schizophrenia: a comparative study in four major psychiatric disorders. Eur Psychiatry. 2015;30(2):198-204. https://doi.org/10.1016/j.eurpsy.2014.11.003
91. Ye F, Zhan Q, Xiao W, Sha W, Zhang X. Altered serum levels of glial cell line-derived neurotrophic factor in male chronic schizophrenia patients with tardive dyskinesia. Int J Methods Psychiatr Res. 2018;27(4):e1727. https://doi.org/10.1002/mpr.1727
92. Xiao W, Ye F, Ma L, Tang X, Li J, Dong H, et al. Atypical antipsychotic treatment increases glial cell line-derived neurotrophic factor serum levels in drug-free schizophrenic patients along with improvement of psychotic symptoms and therapeutic effects. Psychiatry Res. 2016;246:617-22. https://doi.org/10.1016/j.psychres.2016.11.001
93. Skibinska M, Kapelski P, Pawlak J, Rajewska-Rager A, Dmitrzak- Weglarz M, Szczepankiewicz A, et al. Glial Cell Line-Derived Neurotrophic Factor (GDNF) serum level in women with schizophrenia and depression, correlation with clinical and metabolic parameters. Psychiatry Res. 2017;256:396-402. https://doi.org/10.1016/j.psychres.2017.07.014
94. Mätlik K, Garton DR, Montaño-Rodríguez AR, Olfat S, Eren F, Casserly L, et al. Elevated endogenous GDNF induces altered dopamine signalling in mice and correlates with clinical severity in schizophrenia. Mol Psychiatry. 2022;27(8):3247-61. https://doi.org/10.1038/s41380-022-01554-2
95. Michelato A, Bonvicini C, Ventriglia M, Scassellati C, Randazzo R, Bignotti S, et al. 3' UTR (AGG)n repeat of glial cell linederived neurotrophic factor (GDNF) gene polymorphism in schizophrenia. Neurosci Lett. 2004;357(3):235-7. https://doi.org/10.1016/j.neulet.2003.12.089
96. Lee K, Kunugi H, Nanko S. Glial cell line-derived neurotrophic factor (GDNF) gene and schizophrenia: polymorphism screening and association analysis. Psychiatry Res. 2001;104(1):11-7. https://doi.org/10.1016/s0165-1781(01)00294-3
97. Ma XC, Chen C, Zhu F, Jia W, Gao CG. Association of the GDNF gene with depression and heroin dependence, but not schizophrenia, in a Chinese population. Psychiatry Res. 2013;210(3):1296-8. https://doi.org/10.1016/j.psychres.2013.08.025
98. Souza RP, Romano-Silva MA, Lieberman JA, Meltzer HY, MacNeil LT, Culotti JG, et al. Genetic association of the GDNF alphareceptor genes with schizophrenia and clozapine response. J Psychiatr Res. 2010;44(11):700-6. https://doi.org/10.1016/j.jpsychires.2010.01.002
Downloads
Published
Issue
Section
License
Copyright (c) 2023 Authors
This work is licensed under a Creative Commons Attribution 4.0 International License.