Trace elements concentrations in drinking water – is there a risk for neurological or psychiatric disorders?

Authors

DOI:

https://doi.org/10.12923/2353-8627/2023-0022

Keywords:

trace elements, drinking water, contamination, neurological disorder

Abstract

Introduction: Drinking water contaminated with heavy metals like arsenic, cadmium, nickel, mercury, chromium, zinc, lead, etc. is becoming a major health concern. Some trace elements have been linked to neurotoxic effects and an increased risk of neurodevelopmental disorders, although there is still an area for further investigations on how they may affect neurological and psychiatric illnesses. It is widely acknowledged that the generation of reactive oxygen species causes oxidative damage and other detrimental health effects, and is the main mechanism underlying heavy metal-induced toxicity in contaminated drinking water.

The aim: The main objective of this narrative review was to summarize the current knowledge regarding the concentrations of chosen trace elements in drinking water and their possible relationship with neurological and psychiatric disorders.

Material and method: The available literature was reviewed using PubMed, Scopus, and Web of Sciences platforms. The analysis included both reviews and original studies.

Discussion: Some elements such as aluminum, arsenic, lithium, or nickel have been suggested to be risk factors for psychoneurological disorders. Further, studies suggest that some neurobehavioral disorders might be due to the collective action of metals in drinking water.

References

1. Peiyue L., Xinyan L., Xiangyi M., Mengna L., Yuting Z. Appraising groundwater quality and health risks from contamination in a seminarid region of Northwest China, Exposure and Health, 2016, 8, 361-379. https://doi.org/10.1007/s12403-016-0205-y

2. Rosborg I., Kozisek F. Drinking water regulations today and a view for the future, Drinking Water Minerals and Mineral Balance, 2020, 167-175

3. Raczuk, J.; Królak, E.; Biardzka, E. Procentowy udział wody do picia w średnim zapotrzebowaniu młodzieży i osób dorosłych na wapń i magnez. Probl. Hig. Epidemiol. 2015, 92 (2), 529-533.

4. Jarosz, M.; Szponar, L.; Rychlik, E. Woda i elektrolity [w:] Normy żywienia człowieka. Podstawy prewencji otyłości i chorób niezakaźnych. Wydawnictwo Lekarskie PZWL, Warszawa, 2008, 291-319.

5. Ponikowska, J. Lecznictwo uzdrowiskowe. Oficyna Wyd. Branta, Bydgoszcz, 1996.

6. Haghighatdoost, F.; Feizi, A.; Esamaillzadeh, A.; RashidiPourfard, N.; Keshteli A.H.; Roohafza, H.; Adibi, P. Drinking plain water is associated with desreased rish of depression and anxiety in adults: results from a large cross-sectional study. World J. Psychiatry, 2018, 8 (3), 88-96. https://doi.org/10.5498/wjp.v8.i3.88.

7. Amiry-Moghaddam, M.; Ottersen, O.P. The molecular basis of water transport in the brain. Nature Reviews Neuroscience, 2003, 4, 991-1001. https://doi.org/10/1038/nrn1252.

8. Steverson, E.G.; Ambelu, A.; Caruso, B.A.; Tesfaye, T.; Freeman, M.C. Community water improvement, household water insecurity, and women’s psychological distress: an interevention and control study in Ethiopia. PLoS One, 2016, 11:e0153432. https://doi.org/10.1371/journal.pone.0153432.

9. Aihara, Y.; Shrestha, S.; Sharma, J. Household water insecurity, depression, and quality of life among postnatal women living in urban Nepal. J. Water Health, 2016, 14, 317-324, https://doi.org/10.2166/wh.2015.166

10. Ray, I. Women, water, and development. Annual Review of Environment and Resources. 2007, 32, 421-449, https://doi.org/10.1146/annurev.energy.32.041806.143704.

11. Vij, V.A.; Joshi, A.S. Effect of excessive water intake on body weight, body mass index, body fat, and appetite of overweight female participants. J. Nat. Sci. Biol. Med. 2014, 5, 340-344, https://doi.org/10.4103/0976-9668.136180.

12. Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; AlhencGelas, F.; Marre, M.; Bankir, L. Low water intake and risk for new-onset hyperglycemia. Diabetes Care, 2011, 34, 2551-2554. https://doi.org/10.2337/dc11-2551-2554.

13. Palmer, S.C.; Wong, G.; Iff, S.; Yang, J.; Jayaswal, J.C.C.; Rochtchina, E.; Mitchell, P.; Wang, J.J.; Strippoli, G.F.M. Fluid intake and all-caouse mortality, cardiovascular mortality, and kidney function: a population-based longitudinal cohort study. Nephrol. Dial. Dransplant. 2014, 29 (7), 1377-1384, https://doi.org/10.1093/ndt/gft507

14. Katsoyiannis I.A., Gkotsis P., Castellana M., Cartechini F., Zouboulis A.I. Production of demineralized water for use in thermal power stations by advanced treatment of secondary wastewater effluent, Journal of Environmental Management, 2017, 190, 132-139. https://doi.org/10.1016/j.jenvman.2016.12.040

15. Kozisek F. Health risks from consumption of demineralized or low-mineral water, Nutrients in Drinking-Water, World Health Organization, Geneva, 2005, 148-163

16. Sidorenko G.I., Rakhmanin Yu.A. Scientific basis for the study of demineralization of highly mineralized water for use in public water supply systems, Environmental Health Perspectives, 1979, 30, 133-138

17. Kondratyuk, V.A. On the health significance of microelements in low-mineral water. Gig. Sanit. 1989, 2, 81-82.

18. Rosborg, I.; Kozisek, F.; Ferrante, M. Health effects of demineralization of drinking water. Drinking Water Minerals and Mineral Balance, 2020, 149-160.

19. Kultz, D. Cellular osmoregulation: beyond ion transport and cell volume. Zoology 2001, 104 (3-4), 198-208, https://doi.org/10.1078/0944-2006-00025.

20. Rondeau V, Jacqmin-Gadda H, Commenges D, Helmer C, Dartigues JF. Aluminum and silica in drinking water and the risk of Alzheimer's disease or cognitive decline: findings from 15-year follow-up of the PAQUID cohort. Am J Epidemiol. 2009;169(4):489-96. https://doi.org/10.1093/aje/kwn348.

21. Rubin R. Large Study Links Industrial Solvent in Drinking Water to Parkinson Disease Risk in Camp Lejeune Veterans. JAMA. 2023 Jun 6;329(21):1814-1816. https://doi.org/10.1001/jama.2023.6079. PMID: 37184851.

22. Fulgenzi A, Vietti D, Ferrero ME. Aluminium involvement in neurotoxicity. Biomed Res Int. 2014; 2014:758323.

23. Kumar V, Gill KD. Aluminium neurotoxicity: neurobehavioural and oxidative aspects. Arch Toxicol. 2009; 83(11): 965-78.

24. Exley C. Darwin, natural selection and the biological essentiality of aluminium and silicon. Trends Biochem Sci. 2009;34(12):589-93.

25. Exley C. A biogeochemical cycle for aluminium? J Inorg Biochem. 2003;97(1):1-7.

26. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J Toxicol Environ Health B Crit Rev. 2007;10 Suppl 1(Suppl 1):1-269.

27. World Health Organization. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization; 2017. Available online: https://www.who.int/publications/m/item/guidelinesfor-drinking-water-quality-4th-ed.-incorporating-the-1staddendum-(chapters) (accessed on 29 July 2022).

28. Lukiw WJ, Kruck TPA, Percy ME, Pogue AI, Alexandrov PN, Walsh WJ, Sharfman NM, Jaber VR, Zhao Y, Li W, Bergeron C, Culicchia F, Fang Z, McLachlan DRC. Aluminum in neurological disease - a 36 year multicenter study. J Alzheimers Dis Parkinsonism. 2019; 8(6): 457. https://doi.org/10.4172/2161-0460.1000457.

29. Campdelacreu J. Parkinson disease and Alzheimer disease: environmental risk factors. Neurologia. 2014; 29(9): 541-9. English, Spanish. https://doi.org/10.1016/j.nrl.2012.04.001

30. Van Dyke N, Yenugadhati N, Birkett NJ, Lindsay J, Turner MC, Willhite CC, Krewski D. Association between aluminum in drinking water and incident Alzheimer's disease in the Canadian Study of Health and Aging cohort. Neurotoxicology. 2021; 83: 157-165. https://doi.org/10.1016/j.neuro.2020.04.002

31. Martyn CN, Barker DJ, Osmond C, Harris EC, Edwardson JA, Lacey RF. Geographical relation between Alzheimer's disease and aluminum in drinking water. Lancet. 1989;1(8629):59-62.

32. Russ TC, Killin LOJ, Hannah J, Batty GD, Deary IJ, Starr JM. Aluminium and fluoride in drinking water in relation to later dementia risk. Br J Psychiatry. 2020; 216(1): 29-34. https://doi.org/10.1192/bjp.2018.287

33. Flaten TP. Aluminium as a risk factor in Alzheimer's disease, with emphasis on drinking water. Brain Res Bull. 2001; 55(2): 187-96.

34. Fulton B, Jaw S, Jeffery EH. Bioavailability of aluminum from drinking water. Fundam Appl Toxicol. 1989;12(1):144-50.

35. Reiber S, Kukull W, Standish-Lee P. Drinking water aluminum and bioavailability. J. Am. Water Works Assoc., 1995;87(5):86-100

36. Colin-Jones D, Langman MJ, Lawson DH, Vessey MP. Alzheimer's disease in antacid users. Lancet. 1989;1(8652):1453.

37. Graves AB, White E, Koepsell TD, Reifler BV, van Belle G, Larson EB. The association between aluminum-containing products and Alzheimer's disease. J Clin Epidemiol. 1990;43(1):35-44.

38. Forster DP, Newens AJ, Kay DW, Edwardson JA. Risk factors in clinically diagnosed presenile dementia of the Alzheimer type: a case-control study in northern England. J Epidemiol Community Health. 1995;49(3):253-8.

39. Rosborg I, Kozisek F, Soni V. Potentially Toxic Elements in Drinking Water in Alphabetical Order. Rosgorg I, Kozisek F (eds.) Drinking Water Minerals and Mineral Balance. Switzerland 2019: 101-126. https://doi.org/10.1007/978-3-030-18034-8_5

40. World Health Organization. Ammonia. (Enviromental Health Criteria, No. 54) Geneva: World Health Organization; 1986. Available online: https://apps.who.int/iris/bitstream/handle/10665/39087/9241541946-eng.pdf (accessed on 1 August 2022).

41. Fu Q, Zheng B, Zhao X, Wang L, Liu C. Ammonia pollution characteristics of centralized drinking water sources in China. J Environ Sci (China). 2012;24(10):1739-43.

42. Auron A, Brophy PD. Hyperammonemia in review: pathophysiology, diagnosis, and treatment. Pediatr Nephrol. 2012;27(2):207-22.

43. Gaidin SG, Zinchenko VP, Kosenkov AM. Mechanisms of ammonium-induced neurotoxicity. Neuroprotective effect of alpha-2 adrenergic agonists. Arch Biochem Biophys. 2020;693:108593.

44. Allafi AR. The effect of temperature and storage time on the migration of antimony from polyethylene terephthalate (PET) into commercial bottled water in Kuwait. Acta Biomed. 2020;91(4):e2020105.

45. Sundar S, Chakravarty J. Antimony toxicity. Int J Environ Res Public Health. 2010;7(12):4267-77.

46. Boreiko CJ, Rossman TG. Antimony and its compounds: Health impacts related to pulmonary toxicity, cancer, and genotoxicity. Toxicol Appl Pharmacol. 2020;403:115156.

47. Xu S, Zhou P, Li H, Juhasz A, Cui X. Leaching and In Vivo Bioavailability of Antimony in PET Bottled Beverages. Environ Sci Technol. 2021;55(22):15227-15235.

48. Filella M. Antimony and PET bottles: Checking facts. Chemosphere. 2020;261:127732.

49. Shotyk W, Krachler M, Chen B. Contamination of Canadian and European bottled waters with antimony from PET containers. J Environ Monit. 2006;8(2):288-92.

50. Shotyk W, Krachler M. Contamination of bottled waters with antimony leaching from polyethylene terephthalate (PET) increases upon storage. Environ Sci Technol. 2007;41(5):1560-3.

51. Ashby R. Migration from polyethylene terephthalate under all conditions of use. Food Addit. Contam. (Suppl. 001). 1988;5:485-492.

52. Fordham PJ, Gramshaw JW, Crews HM, Castle L. Element residues in food contact plastics and their migration into food simulants, measured by inductively-coupled plasma-mass spectrometry. Food Addit Contam. 1995;12(5):651-69.

53. Thompson D, Parry SJ, Benzing R. The validation of a method for determining the migration of trace elements from food packaging materials into food. J. Radioanal. Nucl. Chem. 1997;217:147-150

54. Qiao F, Lei K, Li Z, Liu Q, Wei Z, An L, Qi H, Cui S. Effects of storage temperature and time of antimony release from PET bottles into drinking water in China. Environ Sci Pollut Res Int. 2018;25(2):1388-1393.

55. Carneado S, Hernández-Nataren E, López-Sánchez JF, Sahuquillo A. Migration of antimony from polyethylene terephthalate used in mineral water bottles. Food Chem. 2015;166:544-550.

56. Zmit B, Belhaneche-Bensemra N. Antimony leaching from PET plastic into bottled water in Algerian market. Environ Monit Assess. 2019;191(12):749.

57. Tanu T, Anjum A, Jahan M, Nikkon F, Hoque M, Roy AK, Haque A, Himeno S, Hossain K, Saud ZA. Antimony-Induced Neurobehavioral and Biochemical Perturbations in Mice. Biol Trace Elem Res. 2018;186(1):199-207.

58. Nurchi VM, Djordjevic AB, Crisponi G, Alexander J, Bjørklund G, Aaseth J. Arsenic Toxicity: Molecular Targets and Therapeutic Agents. Biomolecules. 2020;10(2):235.

59. Arsenic, Fact Sheet No 372. Geneva: World Health Organization; 2012. Available online: http://www.who.int/mediacentre/factsheets/fs372/en/ (accessed on 30 July 2022).

60. Ratnaike RN. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391-6.

61. Rahman MM, Chowdhury UK, Mukherjee SC, Mondal BK, Paul K, Lodh D, Biswas BK, Chanda CR, Basu GK, Saha KC, Roy S, Das R, Palit SK, Quamruzzaman Q, Chakraborti D. Chronic arsenic toxicity in Bangladesh and West Bengal, India--a review and commentary. J Toxicol Clin Toxicol. 2001;39(7):683-700.

62. Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem. 2019;24(8):1305-1316.

63. Ersbøll AK, Monrad M, Sørensen M, Baastrup R, Hansen B, Bach FW, Tjønneland A, Overvad K, Raaschou-Nielsen O. Low-level exposure to arsenic in drinking water and incidence rate of stroke: A cohort study in Denmark. Environ Int. 2018;120:72-80.

64. Lisabeth LD, Ahn HJ, Chen JJ, Sealy-Jefferson S, Burke JF, Meliker JR. Arsenic in drinking water and stroke hospitalizations in Michigan. Stroke. 2010;41(11):2499-504.

65. Moon K, Guallar E, Navas-Acien A. Arsenic exposure and cardiovascular disease: an updated systematic review. Curr Atheroscler Rep. 2012;14(6):542-55.

66. Mochizuki H, Phyu KP, Aung MN, Zin PW, Yano Y, Myint MZ, Thit WM, Yamamoto Y, Hishikawa Y, Thant KZ, Maruyama M, Kuroda Y. Peripheral neuropathy induced by drinking water contaminated with low-dose arsenic in Myanmar. Environ Health Prev Med. 2019;24(1):23.

67. Mukherjee SC, Rahman MM, Chowdhury UK, Sengupta MK, Lodh D, Chanda CR, Saha KC, Chakraborti D. Neuropathy in arsenic toxicity from groundwater arsenic contamination in West Bengal, India. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2003;38(1):165-83.

68. Chakraborti D, Rahman MM, Ahamed S, Dutta RN, Pati S, Mukherjee SC. Arsenic contamination of groundwater and its induced health effects in Shahpur block, Bhojpur district, Bihar state, India: risk evaluation. Environ Sci Pollut Res Int. 2016;23(10):9492-504.

69. Baj J, Forma A, Kobak J, Tyczyńska M, Dudek I, Maani A, Teresiński G, Buszewicz G, Januszewski J, Flieger J. Toxic and Nutritional Optic Neuropathies-An Updated Mini-Review. Int J Environ Res Public Health. 2022;19(5):3092.

70. Freund P, Al-Shafai L, Mankovskii G, Howarth D, Margolin E. Clinicopathological Correlates: Chronic Arsenic Toxicity Causing Bilateral Symmetric Progressive Optic Neuropathy. J. Neuroophthalmol. 2020; 40(3):423-427.

71. Li J, Guo Y, Duan X, Li B. Tissue- and Region-Specific Accumulation of Arsenic Species, Especially in the Brain of Mice, After Long-term Arsenite Exposure in Drinking Water. Biol Trace Elem Res. 2020;198(1):168-176.

72. Peana M, Medici S, Dadar M, Zoroddu MA, Pelucelli A, Chasapis CT, Bjørklund G. Environmental barium: potential exposure and health-hazards. Arch Toxicol. 2021;95(8):2605-2612.

73. Mofett D, Smith C, Stevens Y, Ingerman L, Swarts S, Chappell L. Toxicological profle for barium and barium compounds. Agency for toxic substances and disease registry. US Department of Health and Human Services. 2007, Atlanta, Georgia Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp24.pdf (accessed on 1 August 2022).

74. Ohgami N, Hori S, Ohgami K, Tamura H, Tsuzuki T, Ohnuma S, Kato M. Exposure to low-dose barium by drinking water causes hearing loss in mice. Neurotoxicology. 2012;33(5):1276-83.

75. Fenu EM, Brower JO, O'Neill TE. Suicide by an Unusual Compound: A Case of Barium Acetate Toxicity. Am J Forensic Med Pathol. 2021;42(3):286-288.

76. Kato M, Ohgami N, Ohnuma S, Hashimoto K, Tazaki A, Xu H, Kondo-Ida L, Yuan T, Tsuchiyama T, He T, Kurniasari F, Gu Y, Chen W, Deng Y, Komuro K, Tong K, Yajima I. Multidisciplinary approach to assess the toxicities of arsenic and barium in drinking water. Environ Health Prev Med. 2020;25(1):16.

77. World Health Organization. Beryllium and beryllium compounds. (Concise International Chemical Assessment Document 32) Geneva: World Health Organization; 2001. Available online: 77. http://apps.who.int/iris/bitstream/handle/10665/42369/9241530324.77.pdf;jsessionid=77.BF21176191C16E56FDF722F1D195ABE9?sequence=1 77. (accessed on 2 August 2022).

78. Vaessen HA, Szteke B. Beryllium in food and drinking water--a summary of available knowledge. Food Addit Contam. 2000;17(2):149-59.

79. Kszos LA, Stewart AJ. Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology. 2003;12(5):439-47.

80. Tondo L, Alda M, Bauer M, Bergink V, Grof P, Hajek T, Lewitka U, Licht RW, Manchia M, Müller-Oerlinghausen B, Nielsen RE, Selo M, Simhandl C, Baldessarini RJ; International Group for Studies of Lithium (IGSLi). Clinical use of lithium salts: guide for users and prescribers. Int J Bipolar Disord. 2019;7(1):16.

81. Eyre-Watt B, Mahendran E, Suetani S, Firth J, Kisely S, Siskind D. The association between lithium in drinking water and neuropsychiatric outcomes: A systematic review and metaanalysis from across 2678 regions containing 113 million people. Aust N Z J Psychiatry. 2021;55(2):139-152.

82. Kugimiya T, Ishii N, Kohno K, Kanehisa M, Hatano K, Hirakawa H, Terao T. Lithium in drinking water and suicide prevention: The largest nationwide epidemiological study from Japan. Bipolar Disord. 2021;23(1):33-40.

83. Liaugaudaite V, Naginiene R, Raskauskiene N, Mickuviene N, Bunevicius A, Sher L. Relationship between Lithium Levels in Drinking Water and Suicide Rates: A Nationwide Study in Lithuania. Arch Suicide Res. 2021;25(2):340-352.

84. Barjasteh-Askari F, Davoudi M, Amini H, Ghorbani M, Yaseri M, Yunesian M, Mahvi AH, Lester D. Relationship between suicide mortality and lithium in drinking water: A systematic review and meta-analysis. J Affect Disord. 2020;264:234-241.

85. Memon A, Rogers I, Fitzsimmons SMDD, Carter B, Strawbridge R, Hidalgo-Mazzei D, Young AH. Association between naturally occurring lithium in drinking water and suicide rates: systematic review and meta-analysis of ecological studies. Br J Psychiatry. 2020;217(6):667-678.

86. Oliveira P, Zagalo J, Madeira N, Neves O. Lithium in Public Drinking Water and Suicide Mortality in Portugal: Initial Approach. Acta Med Port. 2019;32(1):47-52.

87. Kabacs N, Memon A, Obinwa T, Stochl J, Perez J. Lithium in drinking water and suicide rates across the East of England. Br J Psychiatry. 2011;198(5):406-7.

88. Schrauzer GN, Shrestha KP. Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biol Trace Elem Res. 1990;25(2):105-13.

89. Kohno K, Ishii N, Hirakawa H, Terao T. Lithium in drinking water and crime rates in Japan: cross-sectional study. BJPsych Open. 2020;6(6):e122.

90. Giotakos O, Tsouvelas G, Nisianakis P, Giakalou V, Lavdas A, Tsiamitas C, Panagiotis K, Kontaxakis V. A negative association between lithium in drinking water and the incidences of homicides, in Greece. Biol Trace Elem Res. 2015;164(2):165-8.

91. Kessing LV, Gerds TA, Knudsen NN, Jørgensen LF, Kristiansen SM, Voutchkova D, Ernstsen V, Schullehner J, Hansen B, Andersen PK, Ersbøll AK. Association of Lithium in Drinking Water With the Incidence of Dementia. JAMA Psychiatry. 2017;74(10):1005-1010.

92. Parker WF, Gorges RJ, Gao YN, Zhang Y, Hur K, Gibbons RD. Association Between Groundwater Lithium and the Diagnosis of Bipolar Disorder and Dementia in the United States. JAMA Psychiatry. 2018;75(7):751-754.

93. Fajardo VA, Fajardo VA, LeBlanc PJ, MacPherson REK. Examining the Relationship between Trace Lithium in Drinking Water and the Rising Rates of Age-Adjusted Alzheimer's Disease Mortality in Texas. J Alzheimers Dis. 2018;61(1):425-434.

94. Shimodera S, Koike S, Ando S, Yamasaki S, Fujito R, Endo K, Iijima Y, Yamamoto Y, Morita M, Sawada K, Ohara N, Okazaki Y, Nishida A. Lithium levels in tap water and psychotic experiences in a general population of adolescents. Schizophr Res. 2018;201:294-298.

95. Ando S, Koike S, Shimodera S, Fujito R, Sawada K, Terao T, Furukawa TA, Sasaki T, Inoue S, Asukai N, Okazaki Y, Nishida A. Lithium Levels in Tap Water and the Mental Health Problems of Adolescents: An Individual-Level Cross-Sectional Survey. J Clin Psychiatry. 2017;78(3):e252-e256.

96. Schullehner J, Paksarian D, Hansen B, Thygesen M, Kristiansen SM, Dalsgaard S, Sigsgaard T, Pedersen CB. Lithium in drinking water associated with adverse mental health effects. Schizophr Res. 2019;210:313-315.

97. Brown EE, Gerretsen P, Pollock B, Graff-Guerrero A. Psychiatric benefits of lithium in water supplies may be due to protection from the neurotoxicity of lead exposure. Med Hypotheses. 2018;115:94-102.

98. Erikson KM, Aschner M. Manganese: Its Role in Disease and Health. Met Ions Life Sci. 98. 2019;19 https://books/9783110527872/978311052787298.-016/9783110527872-016.xml.

99. Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington (DC): National Academies Press (US); 2001.

100. Blanc PD. The early history of manganese and the recognition of its neurotoxicity, 1837-1936. Neurotoxicology. 2018;64:5-11.

101. Dobson AW, Erikson KM, Aschner M. Manganese neurotoxicity. Ann N Y Acad Sci. 2004;1012:115-28.

102. Tinkov AA, Paoliello MMB, Mazilina AN, Skalny AV, Martins AC, Voskresenskaya ON, Aaseth J, Santamaria A, Notova SV, Tsatsakis A, Lee E, Bowman AB, Aschner M. Molecular Targets of Manganese-Induced Neurotoxicity: A Five-Year Update. Int J Mol Sci. 2021;22(9):4646.

103. Soto-Verdugo J, Ortega A. Critical Involvement of Glial Cells in Manganese Neurotoxicity. Biomed Res Int. 2021 Oct;2021:1596185.

104. Balachandran RC, Mukhopadhyay S, McBride D, Veevers J, Harrison FE, Aschner M, Haynes EN, Bowman AB. Brain manganese and the balance between essential roles and neurotoxicity. J Biol Chem. 2020;295(19):6312-6329.

105. Oulhote Y, Mergler D, Barbeau B, Bellinger DC, Bouffard T, Brodeur MÈ, Saint-Amour D, Legrand M, Sauvé S, Bouchard MF. Neurobehavioral function in school-age children exposed to manganese in drinking water. Environ Health Perspect. 2014;122(12):1343-50.

106. Schullehner J, Thygesen M, Kristiansen SM, Hansen B, Pedersen CB, Dalsgaard S. Exposure to Manganese in Drinking Water during Childhood and Association with Attention-Deficit Hyperactivity Disorder: A Nationwide Cohort Study. Environ Health Perspect. 2020;128(9):97004.

107. Bouchard MF, Sauvé S, Barbeau B, Legrand M, Brodeur MÈ, Bouffard T, Limoges E, Bellinger DC, Mergler D. Intellectual impairment in school-age children exposed to manganese from drinking water. Environ Health Perspect. 2011;119(1):138-43.

108. Bouchard MF, Surette C, Cormier P, Foucher D. Low level exposure to manganese from drinking water and cognition in school-age children. Neurotoxicology. 2018;64:110-117.

109. Kullar SS, Shao K, Surette C, Foucher D, Mergler D, Cormier P, Bellinger DC, Barbeau B, Sauvé S, Bouchard MF. A benchmark concentration analysis for manganese in drinking water and IQ deficits in children. Environ Int. 2019;130:104889.

110. Rahman SM, Kippler M, Tofail F, Bölte S, Hamadani JD, Vahter M. Manganese in Drinking Water and Cognitive Abilities and Behavior at 10 Years of Age: A Prospective Cohort Study. Environ Health Perspect. 2017;125(5):057003.

111. Atwal A, Cousin GC. Bismuth toxicity in patients treated with bismuth iodoform paraffin packs. Br J Oral Maxillofac Surg. 2016;54(1):111-112. https://doi.org/10.1016/j.bjoms.2015.09.009

112. Ranjan M, Singh PK, Srivastav AL. A review of bismuth-based sorptive materials for the removal of major contaminants from drinking water. Environ Sci Pollut Res Int. 2020;27(15):17492-17504. https://doi.org/10.1007/s11356-019-05359-9

113. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. Geneva: World Health Organization; 2017.

114. EU Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Communities 1998; 330:32-54

115. Buge A, Supino-Viterbo V, Rancurel G, Pontes C. Epileptic phenomena in bismuth toxic encephalopathy. J Neurol Neurosurg Psychiatry. 1981;44(1):62-67. https://doi.org/10.1136/jnnp.44.1.62

116. Borbinha C, Serrazina F, Salavisa M, Viana-Baptista M. Bismuth encephalopathy- a rare complication of long-standing use of bismuth subsalicylate. BMC Neurol. 2019;19(1):212. Published 2019 Aug 29. https://doi.org/10.1186/s12883-019-1437-9

117. Teepker M, Hamer HM, Knake S, Bandmann O, Oertel WH, Rosenow F. Myoclonic encephalopathy caused by chronic bismuth abuse. Epileptic Disord. 2002;4(4):229-233.

118. WHO. Nutrients in drinking water. In: Water, sanitation and health protection and the human environment. WHO, World Health Organization, Geneva. 2005a.

119. McGuire MJ, Krasner SW, Gramith JT. Comments on bromide levels in state project water and impacts on control of disinfectant by-products. Metropolitan Water District of Southern California, Los Angeles; 1990.

120. NYSDH, New York State Department of Health. Bromate in drinking water – Information fact sheet. Department of Health. Information for a Healthy New York. New York State. Department of Health; 2013. http://www.health.ny.gov/environmental/water/drinking/bromate.htm

121. Lau G. Health and toxicology. In: Thompson KC, Gillespie S, Goslan E (eds) Disinfection byproducts in drinking water. Published online, 2015.

122. Ben Saad H, Driss D, Jaballi I, et al. Potassium Bromate-induced Changes in the Adult Mouse Cerebellum Are Ameliorated by Vanillin. Biomed Environ Sci. 2018;31(2):115-125. https://doi.org/10.3967/bes2018.014

123. Alomirah HF, Al-Zenki SF, Alaswad MC, Alruwaih NA, Wu Q, Kannan K. Elevated concentrations of bromate in Drinking water and groundwater from Kuwait and associated exposure and health risks. Environ Res. 2020;181:108885. https://doi.org/10.1016/j.envres.2019.108885

124. Raúl C, Kim UJ, Kannan K. Occurrence and human exposure to bromate via drinking water, fruits and vegetables in Chile. Chemosphere. 2019;228:444-450. https://doi.org/10.1016/j.chemosphere.2019.04.171

125. Beane Freeman LE, Cantor KP, Baris D, et al. Bladder Cancer and Water Disinfection By-product Exposures through Multiple Routes: A Population-Based Case-Control Study (New England, USA). Environ Health Perspect. 2017;125(6):067010. Published 2017 Jun 21. https://doi.org/10.1289/EHP89

126. WHO (2017b) http://www.who.int/ipcs/assessment/public_health/cadmium/en/

127. Bordas E, Gabor S. Die Cholesterinämie unter der Auswirkung der assoziierten verabreichung von Kadmium, Kupfer und Cholesterin. Rev Roum Biochim. 1982 19:3-7.

128. Eklund G, Oskarsson A. Exposure of cadmium from infant formulas and weaning foods. Food Addit Contam. 1999;16(12):509-519. https://doi.org/10.1080/026520399283650

129. Järup L, Berglund M, Elinder CG, Nordberg G, Vahter M. Health effects of cadmium exposure - a review of the literature and a risk estimate [published correction appears in Scand J Work Environ Health 1998 Jun;24(3):240]. Scand J Work Environ Health. 1998;24 Suppl 1:1-51.

130. García-Esquinas E, Pollan M, Tellez-Plaza M, et al. Cadmium exposure and cancer mortality in a prospective cohort: the strong heart study. Environ Health Perspect. 2014;122(4):363- 370. https://doi.org/10.1289/ehp.1306587

131. Boffetta P, Fontana L, Stewart P, et al. Occupational exposure to arsenic, cadmium, chromium, lead and nickel, and renal cell carcinoma: a case-control study from Central and Eastern Europe. Occup Environ Med. 2011;68(10):723-728. https://doi.org/10.1136/oem.2010.056341

132. World Health Organization . Preventing Disease through Healthy Environments Exposure to Cadmium: A Major Public Health Concern. World Health Organization; Geneva, Switzerland: 2010. [(accessed on 8 December 2017)]

133. Branca JJV, Morucci G, Pacini A. Cadmium-induced neurotoxicity: still much ado. Neural Regen Res. 2018;13(11):1879-1882. https://doi.org/10.4103/1673-5374.239434

134. Lee MJ, Chou MC, Chou WJ, et al. Heavy Metals' Effect on Susceptibility to Attention-Deficit/Hyperactivity Disorder: Implication of Lead, Cadmium, and Antimony. Int J Environ Res Public Health. 2018;15(6):1221. Published 2018 Jun 10. https://doi.org/10.3390/ijerph15061221

135. Kolonel LN. Association of cadmium with renal cancer. Cancer. 1976;37(4):1782-1787. https://doi.org/10.1002/1097-0142(197604)37:43.0.co;2-f

136. Agency for Toxic Substances and Disease Registry . Cadmium Toxicity, What Diseases are Associated with Chronic Exposure to Cadmium? Agency for Toxic Substances and Disease Registry; Atlanta, GA, USA: 2013.

137. Wu H, Liao Q, Chillrud SN, et al. Environmental Exposure to Cadmium: Health Risk Assessment and its Associations with Hypertension and Impaired Kidney Function. Sci Rep. 2016;6:29989. Published 2016 Jul 14. https://doi.org/10.1038/srep29989

138. Ahmed MF, Mokhtar MB. Assessing Cadmium and Chromium Concentrations in Drinking Water to Predict Health Risk in Malaysia. Int J Environ Res Public Health. 2020 Apr 24;17(8):2966. https://doi.org/10.3390/ijerph17082966.

139. Hamel J. A review of acute cyanide poisoning with a treatment update. Crit Care Nurse. 2011;31(1):72-82. https://doi.org/10.4037/ccn2011799

140. WHO. Cyanide in drinking-water. Background document for development of WHO Guidelines for Drinking-water Quality. WHO, World Health Organization, Geneva. 2005b.

141. Hendry-Hofer TB, Ng PC, Witeof AE, Mahon SB, Brenner M, Boss GR, Bebarta VS. A Review on Ingested Cyanide: Risks, Clinical Presentation, Diagnostics, and Treatment Challenges. J Med Toxicol. 2019 Apr;15(2):128-133. https://doi.org/10.1007/s13181-018-0688-y.

142. Haouzi P, McCann M, Wang J, et al. Antidotal effects of methylene blue against cyanide neurological toxicity: in vivo and in vitro studies. Ann N Y Acad Sci. 2020;1479(1):108-121. https://doi.org/10.1111/nyas.14353

143. Rosenow F, Herholz K, Lanfermann H, et al. Neurological sequelae of cyanide intoxication--the patterns of clinical, magnetic resonance imaging, and positron emission tomography findings. Ann Neurol. 1995;38(5):825-828. https://doi.org/10.1002/ana.410380518

144. Borgohain R, Singh AK, Radhakrishna H, Rao VC, Mohandas S. Delayed onset generalised dystonia after cyanide poisoning. Clin Neurol Neurosurg. 1995;97(3):213-215. https://doi.org/10.1016/0303-8467(95)00029-j

145. Tao SH, Bolger PM. Hazard assessment of germanium supplements. Regul Toxicol Pharmacol. 1997 Jun;25(3):211-9. https://doi.org/10.1006/rtph.1997.1098.

146. Schauss AG. Nephrotoxicity and neurotoxicity in humans from organogermanium compounds and germanium dioxide. Biol Trace Elem Res. 1991 Jun;29(3):267-80. https://doi.org/10.1007/ BF03032683.

147. Pi J, Zeng J, Luo JL et al. Synthesis and biological evaluation of Germanium(IV)-polyphenols as potential anti-cancer agents. Bioorg Med Chem Lett. 2013 23(10):2902–2908

148. Obara K, Saito T, Sato H, et al. Germanium poisoning: clinical symptoms and renal damage caused by long-term intake of germanium. Jpn J Med. 1991;30(1):67-72. https://doi.org/10.2169/internalmedicine1962.30.67

149. Ahmed MB, Ahmed MI, Meki AR, Abdraboh N. Neurotoxic effect of lead on rats: Relationship to Apoptosis. Int J Health Sci (Qassim). 2013 Jun;7(2):192-9. https://doi.org/10.12816/0006042.

150. Miranda ML, Kim D, Galeano MA et al. The relationship between early childhood blood lead levels and performance on end-ofgrade tests. Environ Health Perspect. 2007 115:1242-1247.

151. Othman ZA. Lead contamination in selected foods from Riyadh city market and estimation of the daily intake. Molecules. 2010;15(10):7482-7497. Published 2010 Oct 25. https://doi.org/10.3390/molecules15107482

152. Levallois P, Barn P, Valcke M, Gauvin D, Kosatsky T. Public Health Consequences of Lead in Drinking Water. Curr Environ Health Rep. 2018 Jun;5(2):255-262. https://doi.org/10.1007/s40572-018-0193-0

153. Hayes CR, Skubala ND. Is there still a problem with lead in drinking water in the European Union?. J Water Health. 2009;7(4):569-580. https://doi.org/10.2166/wh.2009.110

154. Edwards M. Fetal death and reduced birth rates associated with exposure to lead-contaminated drinking water. Environ Sci Technol. 2014;48(1):739-746. https://doi.org/10.1021/es4034952

155. Payne M. Lead in drinking water. CMAJ. 2008 Jul 29;179(3):253-4. https://doi.org/10.1503/cmaj.071483

156. US EPA. Basic information about Lead in drinking water.2017. https://www.epa.gov/ground-water-and-drinking-water/basic-information-about-lead-drinking-water#health

157. WHO. Trace elements in human nutrition and health. World Health Organization, Geneva. 1996a.

158. Patrick L. Lead toxicity, a review of the literature. Part 1: Exposure, evaluation, and treatment. Altern Med Rev. 2006;11(1):2-22.

159. Byers RK, Lord EE. Late effects of lead poisoning on mental development. American Journal of Diseases of Children, 1943, 66.5: 471-494.

160. Needleman HL. Lead levels and children's psychologic performance. N Engl J Med. 1979;301(3):163.

161. Hong SB, Im MH, Kim JW, et al. Environmental lead exposure and attention deficit/hyperactivity disorder symptom domains in a community sample of South Korean school-age children. Environ Health Perspect. 2015;123(3):271-276. https://doi.org/10.1289/ehp.1307420

162. Forns J, Fort M, Casas M, et al. Exposure to metals during pregnancy and neuropsychological development at the age of 4 years. Neurotoxicology. 2014;40:16-22. https://doi.org/10.1016/j.neuro.2013.10.006

163. Kim S, Arora M, Fernandez C, Landero J, Caruso J, Chen A. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children. Environ Res. 2013;126:105- 110. https://doi.org/10.1016/j.envres.2013.08.008

164. Shih RA, Glass TA, Bandeen-Roche K, et al. Environmental lead exposure and cognitive function in community-dwelling older adults. Neurology. 2006;67(9):1556-1562. https://doi.org/10.1212/01. wnl.0000239836.26142.c5

165. Basha R, Reddy GR. Developmental exposure to lead and late life abnormalities of nervous system. Indian J Exp Biol. 2010;48(7):636-641.

166. Bhan A, Sarkar NN. Mercury in the environment: effect on health and reproduction. Rev Environ Health. 2005 JanMar;20(1):39-56. https://doi.org/10.1515/reveh.2005.20.1.39

167. Bensefa-Colas L, Andujar P, Descatha A. Intoxication par le mercure [Mercury poisoning]. Rev Med Interne. 2011;32(7):416-424. https://doi.org/10.1016/j.revmed.2009.08.024

168. Jackson AC. Chronic Neurological Disease Due to Methylmercury Poisoning. Can J Neurol Sci. 2018 Nov;45(6):620-623. https://doi.org/10.1017/cjn.2018.323.

169. Chang, L.W., & Hartmann, H.A. Blood-brain barrier dysfunction in experimental mercury intoxication. Acta Neuropathologica. 2004 21, 179-184.

170. US EPA. Mercury. Health effects. 2013a. http://www.epa.gov/hg/effects.htm#elem

171. Aastrup, M., Thunholm, B., Johnson, J., Bertills, U. and Berntell, A. The Chemistry of Ground Water. The Swedish Bed-Rock, SEPA Report 4415. 1995.

172. Mercola J, Klinghardt D. Mercury toxicity and systemic elimination agents. J Nutr Environ Med. 2001;11(1):53-62. https://doi.org/10.1080/13590840020030267

173. Carter JA, Desai SM, Probst J, Kogan M. Integrative Medicine Approach To Peripheral Neuropathy-Avoiding Pitfalls Of Ineffective Current Standards In Assessing Chronic Low-Grade Mercury Toxicity And Functional Musculoskeletal Lesions. Integr Med (Encinitas). 2019;18(5):49-55.

174. Yawei C, Jing S, Wenju S, Yupeng L, Ping Z, Liping H. Mercury as a cause of membranous nephropathy and Guillain-Barre syndrome: case report and literature review. J Int Med Res. 2021;49(3):300060521999756. https://doi.org/10.1177/0300060521999756

175. Jeong KS, Park H, Ha E, et al. High Maternal Blood Mercury Level Is Associated with Low Verbal IQ in Children. J Korean Med Sci. 2017;32(7):1097-1104. https://doi.org/10.3346/jkms.2017.32.7.1097

176. El-Naggar A, Ahmed N, Mosa A, Niazi NK, Yousaf B, Sharma A, Sarkar B, Cai Y, Chang SX. Nickel in soil and water: Sources, biogeochemistry, and remediation using biochar. J Hazard Mater. 2021 Oct 5;419:126421. https://doi.org/10.1016/j.jhazmat.2021.126421

177. Mislankar M, Zirwas MJ. Low-nickel diet scoring system for systemic nickel allergy. Dermatitis. 2013 Jul-Aug;24(4):190-5. https://doi.org/10.1097/der.0b013e3182937e81

178. Genchi G, Carocci A, Lauria G, Sinicropi MS, Catalano A. Nickel: Human Health and Environmental Toxicology. Int J Environ Res Public Health. 2020 Jan 21;17(3):679. https://doi.org/10.3390/ijerph17030679

179. Martínez-Martínez MI, Muñoz-Fambuena I, Cauli O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr Metab Immune Disord Drug Targets. 2020;20(7):985-991. https://doi.org/10.2174/18715303196661912021412 09

180. Ke, Q.; Li, Q.; Ellen, T.P.; Sun, H.; Costa, M. Nickel compounds induce phosphorylation of histone H3 at serine 10 by activating JNK–MAPK pathway. Carcinogenesis 2008, 29, 1276-1281.

181. Czarnek K., Terpilowska S., Siwicki A.K., Genotoxicity and mutagenicity of nickel(II) and iron(III) and interactions between these microelements . TE. 2018. https://doi.org/10.5414/tex01545

182. Ke, Q.; Ellen, T.P.; Costa, M. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity. Toxicol. Appl. Pharm. 2008, 228, 190-199.

183. Siddiqui,M.A.;Ahamed,M.;Ahmad,J.;MajeedKhan,M.A.;Musarrat, J.;Al-Khedhairy,A.A.;Alrokayan,S.A. Nickel oxide nanoparticles induce cytotoxicity, oxidative stress and apoptosis in cultured human cells that is abrogated by the dietary antioxidant curcumin. Food Chem. Toxicol. 2012, 50, 641-647.

184. Kang,J.;Zhang,D.;Chen,J.;Lin,C.;Liu,Q.Involvementofhistonehyp oacetylationinNi2+-inducedBcl-2 down-regulation and human hepatoma cell apoptosis. J. Biol. Inorg. Chem. 2004, 9, 713-723.

185. Guan,F.;Zhang,D.;Wang,X.;Chen,J.NitricoxideandBcl-2mediate dtheapoptosisinducedbynickel(II)in human T hybridoma cells. Toxicol. Appl. Pharm. 2007, 221, 86-94.

186. Zambelli B, Uversky VN, Ciurli S. Nickel impact on human health: An intrinsic disorder perspective. Biochim Biophys Acta. 2016 Dec;1864(12):1714-1731. https://doi.org/10.1016/j.bbapap.2016.09.008

187. Sunderman, F.W., Jr.; Shen, S.K.; Reid, M.C.; Allpass, P.R. Teratogenicity and embryotoxicity of nickel carbonyl in Syrian hamsters. Teratog. Carcinog. Mutagen. 1980, 1, 223-233.

188. Su nder ma n, F.W. , Jr.;Reid, M .C .;S hen, S . K .;Kevork ia n,C . B . Embryotoxicity and teratogenicity of nickel compounds. In Reproductive and Developmental Toxicity of Metals; Clarkson, T.W., Nordberg, G.F., Sager, P.R., Eds.; Springer: Boston, MA, USA, 1983; pp. 399-416.

189. Rizvi A, Parveen S, Khan S, Naseem I. Nickel toxicology with reference to male molecular reproductive physiology. Reprod Biol. 2020 Mar;20(1):3-8. https://doi.org/10.1016/j.repbio.2019.11.005

190. Zdrojewicz Z, Popowicz E, Winiarski J. Nikiel - rola w organizmie człowieka i działanie toksyczne [Nickel - role in human organism and toxic effects]. Pol Merkur Lekarski. 2016 Aug;41(242):115- 8. Polish.

191. Kobayashi J. Nitrite in breast milk: roles in neonatal pathophysiology. Pediatr Res. 2021 Jul;90(1):30-36. https://doi.org/10.1038/s41390-020-01247-y

192. Oliveira-Paula GH, Pinheiro LC, Tanus-Santos JE. Mechanisms impairing blood pressure responses to nitrite and nitrate. Nitric Oxide. 2019 Apr 1;85:35-43. https://doi.org/10.1016/j.niox.2019.01.015

193. Lefer DJ. Emerging role of nitrite in myocardial protection. Arch Pharm Res. 2009 Aug;32(8):1127-38. https://doi.org/10.1007/s12272-009-1804-y

194. Dezfulian C, Raat N, Shiva S, Gladwin MT. Role of the anion nitrite in ischemia-reperfusion cytoprotection and therapeutics. Cardiovasc Res. 2007 Jul 15;75(2):327-38. https://doi.org/10.1016/j. cardiores.2007.05.001

195. Kelly-Reif K, Sandler DP, Shore D, Schubauer-Berigan M, Troester MA, Nylander-French L, Richardson DB. Mortality and cancer incidence among underground uranium miners in the Czech Republic 1977-1992. Occup Environ Med. 2019 Aug;76(8):511-518. https://doi.org/10.1136/oemed-2018-105562

196. Bjørklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, Chirumbolo S. Uranium in drinking water: a public health threat. Arch Toxicol. 2020 May;94(5):1551-1560. https://doi.org/10.1007/s00204-020-02676-8

197. Carmona A, Porcaro F, Somogyi A, Roudeau S, Domart F, Medjoubi K, Aubert M, Isnard H, Nonell A, Rincel A, Paredes E, Vidaud C, Malard V, Bresson C, Ortega R. Cytoplasmic aggregation of uranium in human dopaminergic cells after continuous exposure to soluble uranyl at non-cytotoxic concentrations. Neurotoxicology. 2021 Jan;82:35-44. https://doi.org/10.1016/j.neuro.2020.10.015

198. Ma J, Wang B, Gao X, Wu H, Wang D, Li N, Tan J, Wang J, Yan L. A comparative study of the typical toxic metals in serum by patients of schizophrenia and healthy controls in China. Psychiatry Res. 2018 Nov;269:558-564. https://doi.org/10.1016/j.psychres.2018.08.114

Downloads

Published

2023-09-29