In vivo research of choroidal neovascularization – an animal model
Keywords:
age-related macular degeneration, animal model, choroidal neovascularizationAbstract
Introduction. Choroidal neovascularization (CNV) is a vascular hyperplasia of vessels, originating from choroid capillary vessels which, through the Bruch’s membrane, get into the area under the retinal pigment epithelium as well as the retinal pigment epithelium and the retinal photoreceptors’ region. CNV is known to be the main reason for a severe visual loss in patients with age-related macular degeneration (AMD). AMD is the leading cause of blindness in people over 50 years of age in the western world.
Aim. Evaluation of the applicability of a laser-induced mouse model of CNV to investigate the choroidal neovascularization.
Material and methods. The research was carried out on C57/BL6 mice. The mice were subjected to laser photocoagulation and two weeks later fluorescein angiography was performed.
Results. Two weeks after the laser photocoagulation of the area of pathological fluorescein, a leakage, resembling CNV formation, appeared, after fluorescein injection, in the angiograms of the early (1-3 min) and the late (6-8 min) phase. In the place of the laser spots, a process of formation of large and diffused areas of leakage was observed. These lesions presented an increase in size and intensity during angiography.
Conclusions. The laser-induced mouse model of CNV resembles human CNV lesions. The obtained animal model of CNV could be used in further research on CNV which is responsible for the severe visual loss and the damage of retina in age-related macular degeneration.
References
1. Bressler NM. Age-related macular degeneration is the leading cause of blind- ness. JAMA 2004; 291(15):19000-1.
2. Cai J, Jiang WG, Grant MB, Boulton M. Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of VEGFR-1. J Biol Chem 2006; 281(6):3604–13.
3. Fauser S, Engelmann K, Krohne TU, Kirchcof B, Joussen AM. Pathogenese der choroidelen Neovascularisation; Opththalmologe 2003; 100(4):300-5.
4. Nowak JZ, Wiktorowska-Owczarek A. Neowaskularyzacja w tkankach oka: mechanizmy i rola czynników pro- i antyangiogennych. Klin Oczna 2004; 106(1-2):90–7.
5. Nowak JZ. Age-related macular degeneration (AMD): pathogenesis and therapy. Pharmacol Rep 2006; 58(3):353–63.
6. Bressler NM, Frost LA, Bressler SB, Murphy RP, Fine SL. Natural course of poorly defined choroidal neovascularization associated with macular degen- eration. Arch Ophthalmol 1988; 106(11):1537-42.
7. Vindingt T. Macula – the eye in the eye. Acta Ophthalmol (Suppl.) 1995; 217:2-26.
8. Miller DW, Joussen AM, Holz FG. Die molekularen Mechanismen der neo- vaskulären AMD. Ophthalmologe 2003; 100(2):92–6.
9. Campochiaro PA. Ocular neovascularization and excessive vascular perme- ability. Expet Opin Biol Ther 2004; 4(9):1395–1402.
10. Semkova I, Fauser S, Lappas A, Smyth N, Kociok N, Kirchhof B, Paulsson M, Poulaki V, Joussen AM. Overexpression of FasL in retinal pigment epithe- lial cells reduces choroidal neovascularization. FASEB J 2006; 20(10):1689-91.
11. Semkova I, Peters S, Welsandt G, Janicki H, Jordan J, Schraermeyer U. In- vestigation of laser-induced choroidal neovascularization in the rat. Invest Ophthalmol Vis Sci 2003; 44(12):5349-54.
12. Shi X, Semkova I, Müther PS, Dell S, Kociok N, Joussen AM. Inhibition of TNF alpha reduces laser-induced choroidal neovascularization. Exp Eye Res 2006; 83(6):1325-34.
13. Rink L, Kirchner H. Recent progress in the tumor necrosis factor-alpha field. Int Arch Allergy Immunol 1996; 111(3):199-209.
14. Tobe T, Ortega S, Luna JD, Ozaki H, Okamoto N, Derevjanik NL, Vinores SA, Basilico C, Campochiaro PA. Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. Am J Pathol 1998; 153(5):1641-46.
15. Jasielska M, Semkova I, Shi X, Schmidt K, Karagiannis D, Kokkinou D, Mackiewicz J, Kociok N, Joussen AM. Differential role of tumor necrosis factor (TNF)-α receptors in the development of choroidal neovascularization. Invest Ophthalmol Vis Sci 2010; 51(8):3874-83.
16. Ryan SJ. The development of an experimental model of subretinal neovas- cularization in disciform macular degeneration. Trans Am Ophthalmol Soc 1979;77:707–45.
17. Augood C, Fletcher A, Bentham G. Chakravarthy U, de Jong PT, Rahu M, Seland J, Soubrane G, Tomazzoli L, Topouzis F, Viogue J, Young I. Methods for population-based study of the prevalence of and risk factors for age-relat- ed maculopathy and macular degeneration in elderly European populations: the UREYE study. Ophthalmic Epidemiol 2004; 11(2):117-29.
18. Friedman DS, O’Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT, Nemesure B, Mitchell P, Kempen J. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004; 122(4):564-72.
19. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. Global data on visual impairment in the year 2002. Bull World Health Organ 2004; 82(11):844-51.
20. Ambati J, Anand A, Fernandez S, Sakurai E, Lynn BC, Kuziel WA, Rollins BJ, Ambati BK. An animal model of age-related macular degeneration in se- nescent Ccl-2- or Ccr-2-deficient mice. Nat Med 2003; 9(11):1390-97.
21. Amin R, Puklin JE, Frank RN. Growth factor localization in choroidal neo- vascular membranes of age-related macular degeneration. Invest Ophthalmol Vis Sci 1994; 35(8):3178-88.
22. Edelman J.L, Castro M.R. Quantitative image analysis of laser-induced cho- roidal neovascularization in rat. Exp Eye Res 2000; 71(5):523–33.
23. Espinosa-Heidmann DG, Suner IJ, Hernandez EP, Monroy D, Csaky KG, Cousins SW. Macrophage depletion diminishes lesion size and severity in experimental choroidal neovascularization. Invest Ophthalmol Vis Sci 2003; 44(8):3586-92.
24. Sakurai E, Anand A, Ambati BK, van Rooijen N, Ambati J. Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthal- mol Vis Sci 2003; 44(8):3578-85.
25. Tsutsumi-Miyahara C, Sonoda KH, Eqashira K, Ishibashi M, Qiao H, Os- hima T, Murata T, Miyazaki M, Charo I.F, Hamano S, Ishibashi T. The rela- tive contributions of each subset of ocular infiltrated cells in experimental choroidal neovascularization. Br J Ophthalmol 2004; 88(9):1217-22.