Current views on the role and pathogenesis of osteoarthritis of the knee
Keywords:
osteoarthritis, articular cartilage, chondrocytes, OA diagnosisAbstract
Osteoarthritis (OA) is the most common condition of the motor system accompanied by chronic pain and disability. It is characterized by articular cartilage degradation, subchondral bone lesions and a local inflammation within the joint. High costs of treatment and great incidence of OA have led to recognizing this condition as a civilization-related disease. In Poland eight million people suffer from OA. In 40% of the cases the disease is located in hip joints and in 25% knee joints. The prevalence increases with age and overweight and obesity create favorable conditions for the development of the disease. People who were obese in their childhood or adolescence are more likely to suffer from OA. The main clinical symptoms include pain, edema, stiffness, limited function and scope of movement and joint malformation. Radiology is the most available diagnostic technique to assess OA. In early diagnostics of articular cartilage pathology the best option is to combine ultrasonography and magnetic resonance imaging.
Currently, in order to assess the size and location of defects of articular cartilage doctors perform arthroscopy. The main components of this hypocellular tissue are chondrocytes and amorphous intercellular substance which in turn is composed of cartilage matrix and densely packed collagen fibers. Chondrocytes are typically spherical and hexagonal shaped cells. They account for less than 1% of the volume of mature cartilage and are surrounded by pericellular matrix. They have the ability to produce type II collagen and aggrecans. The most important feature of chondrocytes obtained from OA patients is their hyperreactivity. While the most important factor of self-healing is the interaction between collagen matrix and proteoglycans.
Osteoarthritis prevention is prognostically useful.
References
1. Lipka D, Boratyński J. Metalloproteinases. Structure and function. Postepy Hig Med Dosw. 2008;62:328-36.
2. Szczesny G. The pathomechanism of degenerative changes in joints. Ortop Traumatol Rehabil. 2002;30:222-9.
3. Rabenda V, Manette C, Lemmens R, et al. Direct and indirect costs attributable to osteoarthritis in active subjects. J Rheumatol. 2006;33:1152-8.
4. Głuszko P. Osteoartroza-choroba zwyrodnieniowa stawów. Przew Lek. 2007;5:20-5.
5. Wieczorek M. Wpływ zużycia chrząstki stawowej na układ ruchowy. Rehabilitacja w praktyce. 2010;4:23.
6. Zimmmermann-Górska I, (ed). Reumatologia kliniczna. Warszawa: PZWL; 2008.
7. Pruszyński B, (ed). Radiologia. Diagnostyka obrazowa. Warszawa: PZWL; 2005.
8. Brant WE, Helms CA, (ed). Podstawy diagnostyki radiologicznej. Warszawa: Medipage; 2008.
9. Jakubowski W, (ed). Ultrasonografia układu ruchu. Wrocław: Elsevier Urban & Partner; 2008.
10. Czyrny Z. Badanie obrazowe w diagnostyce chrząstki stawowej. Acta Clin. 2001;1:33-44.
11. Wakefield RJ, Gibbon WW, Conaghan PG, et al. The value of sonography in the detection of bone erosions in patients with rheumatoid arthritis: a comparison with conventional radiography. Arthritis Rheum 2000;43:2762-70.
12. Runge VM. Rezonans magnetyczny w praktyce klinicznej. Wrocław: Elsevier Urban & Partner; 2007.
13. Sąsiadek M, (ed). Obrazowanie ciała metodą rezonansu magnetycznego. Warszawa: Med-Media; 2010.
14. Lewandrowski KU, Ekkernkamp A, Dávid A, et al. Classification of articular cartilage lesions of the knee at arthroscopy. Am J Knee Surg. 1996;9:121-8.
15. Konik H, Katra M, Kącik W, Kulawik M. Obraz artroskopowy zwyrodnienia stawu kolanowego. Chir Narz Ruchu Ortop Pol. 1998;63:161-5.
16. Widuchowski W, Widuchowski J. Artroskopia w uszkodzeniach chrząstki stawowej kolana. Chirurgia kolana, Artroskopia, Traumatologia Sportowa. 2009;1:25-37.
17. Malejczyk J. Structure and immunology of the cartilaginous tissue. Acta Clinica. 2001;1:15-22.
18. Kuettner KE, Aydelotte MB, Thonar EJ. Articular cartilage matrix and structure: a minireview. J Rheumatol Suppl. 1991;27:46-8.
19. Marczyński W. Pathology of articular cartilage – dynamics of changes, prevention. Wiad Lek. 2007;60:53-9.
20. Ulrich-Vinther M, Maloney MD, Schwarz EM, et al. Articular cartilage biology. J Am Acad Orthop Surg. 2003;11:421-30.
21. Cranenburg EC, Schurgers LJ, Vermeer C. Vitamin K. The coagulation vitamin that became omnipotent. Thromb Haemost. 2007;98:120-5.
22. Schurgers LJ, Teunissen KJ, Knapen MH, et al. Characteristics and performance of an immunosorbent assay for human matrix Gla-protein. Clin Chim Acta. 2005;351:131-8.
23. Nakatani S, Mano H, Ryanghyok IM, et al. Excess magnesium inhibits excess calcium-induced matrix-mineralization and production of matrix gla protein (MGP) by ATDC5 cells. Biochem Biophys Res Commun. 2006;348:1157-62.
24. Xue W, Wallin R, Olmsted-Davis EA, Borrás T. Matrix GLA protein function in human trabecular meshwork cells: inhibition of BMP2-induced calcification process. Invest Ophthalmol Vis Sci. 2006;47:997- 1007.
25. Zebboudj AF, Imura M, Boström K. Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J Biol Chem. 2002;277:4388- 94.
26. Hashimoto G, Inoki I, Fujii Y, et al. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem. 2002;277:36288- 95.
27. Hashimoto S, Creighton-Achermann L, Takahashi K, et al. Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage. 2002;10:180-7.
28. Bogaczewicz J, Dudek W, Zubilewicz T, et al. The role of matrix metalloproteinases and their tissue inhibitors in angiogenesis. Pol Merkur Lekarski. 2006;21:80-5.
29. Lindqvist E, Eberhardt K, Bendtzen K, et al. Prognostic laboratory markers of joint damage in rheumatoid arthritis. Ann Rheum Dis. 2005;64:196-201.
30. Olewicz-Gawlik A, Stryjska M, Łącki JK. Udział zapalenia w patogenezie choroby zwyrodnieniowej stawów. Now Lek. 2003;72:305-9.
31. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92:827-39.
32. Garnero P. Osteoarthritis: biological markers for the future? Joint Bone Spine. 2002;69:525-30.
33. LeGrand A, Fermor B, Fink C, et al. Interleukin-1, tumor necrosis factor alpha, and interleukin-17 synergistically up-regulate nitric oxide and prostaglandin E2 production in explants of human osteoarthritic knee menisci. Arthritis Rheum. 2001;44:2078-83.
34. Alaaeddine N, Di Battista JA, Pelletier JP, Kiansa K, Cloutier JM, Martel-Pelletier J. Differential effects of IL-8, LIF (pro-inflammatory) and IL-11 (anti-inflammatory) on TNF-alpha-induced PGE(2)release and on signaling pathways in human OA synovial fibroblasts. Cytokine. 1999;11:1020-30.
35. Jovanovic D, Pelletier JP, Alaaeddine N, et al. Effect of IL-13 on cytokines, cytokine receptors and inhibitors on human osteoarthritis synovium and synovial fibroblasts. Osteoarthritis Cartilage. 1998;6:40-9.
36. Poole AR. An introduction to the pathophysiology of osteoarthritis. Front Biosci. 1999;15:662-70.
37. Poole AR. Biochemical/immunochemical biomarkers of osteoarthritis: utility for prediction of incident or progressive osteoarthritis. Rheum Dis Clin North Am. 2003;29:803-18.
38. Pulsatelli L, Dolzani P, Piacentini A, et al. Chemokine production by human chondrocytes. J Rheumatol. 1999;26:1992-2001.
39. Borzi RM, Mazzetti I, Macor S, et al. Flow cytometric analysis of intracellular chemokines in chondrocytes in vivo: constitutive expression and enhancement in osteoarthritis and rheumatoid arthritis. FEBS Lett. 1999;455:238-42.
40. Enomoto H, Inoki I, Komiya K, et al. Vascular endothelial growth factor isoforms and their receptors are expressed in human osteoarthritic cartilage. Am J Pathol. 2003;162:171-81. 41. Lis K. Bone sialoprotein in laboratory diagnostic work-up of osteoarthritis. Ortop Traumatol Rehabil. 2008;10:211-7.
42. Hyc A, Osiecka-Iwan A, Jóźwiak J, Moskalewski S. The morphology and selected biological properties of articular cartilage. Ortop Traumatol Rehabil. 2001;3:151-62.
43. Lis K. Stężenie białka MGP w surowicy pacjentów w późnym stadium choroby zwyrodnieniowej stawów. Reumatologia. 2008;46:1-5.
44. Vilím V, Olejárová M, Machácek S, et al. Serum levels of cartilage oligomeric matrix protein (COMP) correlate with radiographic progression of knee osteoarthritis. Osteoarthritis Cartilage. 2002;10:707-13.
45. Conrozier T, Ferrand F, Vignon E, et al. Relationship between serum biomarkers of type II collagen (C2C; C1, 2C and CP II) and radio logical patterns in patient with hip osteoarthritis. Osteoarthritis Cartilage. 2005;5:38-41.
46. Conrozier T, Saxne T, Fan CS, et al. Serum concentrations of cartilage oligomeric matrix protein and bone sialoprotein in hip osteoarthritis: a one year prospective study. Ann Rheum Dis. 1998;57:527-32.
47. Carlinfante G, Vassiliou D, Svensson O, et al. Differential expression of osteopontin and bone sialoprotein in bone metastasis of breast and prostate carcinoma. Clin Exp Metastasis. 2003;20:437-44.
48. Gorski JP, Wang A, Lovitch D, et al. Extracellular bone acidic glycoprotein- 75 defines condensed mesenchyme regions to be mineralized and localizes with bone sialoprotein during intramembranous bone formation. J Biol Chem. 2004;279:25455-63.
49. Johansen JS, Hvolris J, Hansen M, et al. Serum YKL-40 levels in healthy children and adults. Comparison with serum and synovial fluid levels of YKL-40 in patients with osteoarthritis or trauma of the knee joint. Br J Rheumatol. 1996;35:553-9.
50. Zivanović S, Rackov LP, Vojvodić D, Vucetić D. Human cartilage glycoprotein 39-biomarker of joint damage in knee osteoarthritis. Int Orthop. 2009;33:1165-70.
51. Kawasaki M, Hasegawa Y, Kondo S, Iwata H. Concentration and localization of YKL-40 in hip joint diseases. J Rheumatol. 2001;28:341-5.
52. Gravallese EM. Osteopontin: a bridge between bone and the immune system. J Clin Invest. 2003;112:147-9.
53. Pullig O, Pfander D, Swoboda B. Molecular principles of induction and progression of arthrosis. Orthopade. 2001;30:825-33.