Changes in the levels of kynurenic acid and selected proinflammatory cytokines after pharmacological treatment and electroconvulsive therapy (ECT) in patients with depressive disorder
DOI:
https://doi.org/10.1515/cpp-2016-0008Keywords:
kynurenic acid, depression, proinflammatory cytokinesAbstract
The aim of the present study was to compare the concentrations of KYNA, 3-OH-KYN and the cytokines TNF-α and IL-6 in patients with depression vs. healthy controls as well as in patients with depression treated pharmacologically vs. those treated using ECT. We also evaluated the relationship between the concentrations of KYNA, 3-OH-KYN and the cytokines TNF-α and IL-6 and clinical improvement measured on the MADRS scale in patients treated pharmacologically and those treated with ECT.
Subjects and methods. The study group comprised 29 patients aged 28 to 60 years with a diagnosis of a major depressive episode. Eleven of the patients received pharmacological treatment and 18 were treated with ECT.
Patients were assayed for serum levels of KYNA and the cytokines IL-6 and TNF-α. Clinical improvement was measured on the MADRS depression rating scale and the clinical global impression (CGI) scale.
Results. Significant differences were found in KYNA levels between depressive patients and healthy controls. Pharmacological treatment significantly contributed to the increase in KYNA levels and ECT – to the increase in TNF-α levels in depressive patients.
Conclusions:
- Depressive patients have significantly lower concentrations of KYNA than healthy individuals
- Depressive patients who have undergone pharmacological treatment have significantly higher KYNA concentrations than before treatment.
- Depressive patients who have undergone ECT treatment have significantly lower TNF-α concentrations than before treatment.
- High pre-treatment levels of IL-6 are associated with a lower MADRS improvement index in pharmacologically treated patients with depression.
References
1. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M. i wsp. Quinolinic acid and kynurenine pathway metabolism in in-flammatory and non-inflammatory neurological disease. Brain 1992; 115: 1249–1273.
2. Dursun SM, Blackburn JR, Kutcher SP. An exploratory approach to the serotonergic hypothesis of depression: bridging the synaptic gap. Med. Hypotheses 2001; 56(2): 235–243.
3. Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B. Kynurenine pathway in major depression: evidence of im-paired neuroprotection. J. Affect. Disord. 2007; 98(1-2): 143–151.
4. Kohl C, Walch T, Huber R, Kemmler G, Neurauter G, Fuchs D i wsp. Measurement of tryptophan, kynurenine and neopterin in women with and without postpartum blues. J Affect Disord. 2005; 86(2-3): 135–142.
5. Alesci S, Martinez PE, Kelkar S, Ilias I, Ronsaville DS, Listwak SJ i wsp. Major depression is associated with significant diurnal ele-vations in plasma interleukin-6 levels, a shift of its circadian rhythm, and loss of physiological complexity in its secretion: clin-ical implications. J. Clin. Endocrinol. Metab. 2005; 90: 2522–2530.
6. Ryś A, Miodek A, Szemraj P, Szemraj J, Kocur J. Interleukina-6 - jej funkcje, wpływ na zaburzenia nastroju i inne procesy chorobowe. Post. Psychiatr. Neurol. 2007: 16(4): 331–334.
7. Służewska A, Rybakowski J, Sobieska M. Aktywacja układu im-munologicznego w depresji endogennej. Psychiatr. Pol. 1996; 30(5): 771–782.
8. Maes, M, Meltzer H, Bosmans E, Bergmans R, Vandoolaeghe E, Rajan R i wsp. Increased plasma concentrations of interleukin-6, soluble inter-leukin-6 receptor, soluble interleukin-2 receptor and transferrin recep-tor in major depression. J. Affect. Disord. 1995; 34(4): 301–309.
9. Yoshimura R, Umene-Nakano W, Hoshuyama T, Ikenouchi-Sugita A, Hori H, Katsuki A i wsp. Plasma levels of brain-derived neurotrophic factor and interleukin-6 in patients with dysthymic disorder: comparison with age- and sex-matched major de-pressed patients and healthy controls. Hum. Psychopharmacol. 2010; 25(7-8): 566–569.
10. Crnković D, Buljan D, Karlović D, Krmek M. Connection between inflammatory markers, antidepressants and depression. Acta Clin. Croat. 2012; 51(1): 25–33.
11. Dunjic-Kostic B, Ivkovic M, Radonjic NV, Petronijevic ND, Pantovic M, Damjanovic A i wsp. Melancholic and atypical major depression-connection between cytokines, psychopathology and treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 2013; 43: 1–6.
12. Hestad KA, Tønseth S, Støen CD, Ueland T, Aukrust P. Raised plasma levels of tumor necrosis factor alpha in patients with de-pression: normalization during electroconvulsive therapy. J ECT. 2003; 19(4):183–188.
13. Tuglu C, Kara SH, Caliyurt O, Vardar E, Abay E. Increased serum tumor necrosis factor-alpha levels and treatment response in ma-jor depressive disorder. Psychopharmacology (Berl). 2003; 170(4): 429–433.
14. O'Brien SM, Scully P, Scott LV, Dinan TG. Cytokine profiles in bipolar disorder: focus on acutely ill patients. J. Affect. Disord. 2006; 90(2-3): 263–267.
15. Modabbernia A, Taslimi S, Brietzke E, Ashrafi M. Cytokine altera-tions in bipolar disorder: a meta-analysis of 30 studies . Biol. Psy-chiatry 2013; 74(1): 15–25.
16. Kubera M, Kenis G, Bosmans E, Zięba A, Dudek D, Nowak G i wsp. Plasma levels of intraleukin-6, intraleukin-10, and intraleukin-1 re-ceptor antagonist in depression: comparison between the acute state and after remission. Pol. J. Pharmacol. 2000; 52(3): 237–241.
17. Hocaoglu C, Kural B, Aliyazıcıoglu R, Deger O, Cengiz S. IL-1β, IL-6, IL-8, IL-10, IFN-γ, TNF-α and its relationship with lipid pa-rameters in patients with major depression. Metab. Brain Dis. 2012; 27(4): 425–430.
18. Myint AM, Kim YK. Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med. Hypotheses 2003; 61(5-6): 519–525.
19. Myint AM, Bondy B, Baghai TC, Eser D, Nothdurfter C, Schule C i wsp. Tryptophan metabolism and immunogenetics in major de-pression: a role for interferon-gamma gene. Brain Behav Immun 2013 31: 128–133.
20. Ball HJ, Yuasa HJ, Austin CJ, Weiser S, Hunt NH. Indoleamine 2,3-dioxygenase-2; a new enzyme in the kynurenine pathway. Int. J. Biochem. Cell Biol. 2009; 41: 467–471.
21. Maes M, Verkerk R, Bonaccorso S, Ombelet W, Bosmans E, Scharpé S. Depressive and anxiety symptoms in the early puerperium are related to increased degradation of tryptophan in to kynurenine, a phenomenon which is related to immune ac-tivation. Life Sci. 2002; 71(16): 1837–1848.
22. Wichers M, Maes M. The role of indoleamine 2,3 dioxygenase (IDO) in the pathophysiology of interferon-alpha-induced de-pression. J. Psychiatry Neurosci. 2004; 29(1): 11–17.
23. Olajossy M. Poziom kwasu kynureninowego w surowicy chorych na depresję leczonych elektrycznie. Rozprawa habilitacyjna. Lu-blin: Uniwersytet Medyczny w Lublinie; 2010.
24. Maes M, Gałecki P, Verkerk R, Rief W. Somatization, but not depression, is characterized by disorders in the tryptophan catabolite (TRYCAT) pathway, indicating increased indoleamine 2,3-dioxygenase and lowered kynurenine aminotransferase ac-tivity. Neuro. Endocrinol. Lett. 2011; 32(3): 264–273.
25. Olajossy M, Olajossy B, Potembska E, Skoczeń N, Wnuk S, Urbań-ska E. Stężenie kwasu kynureninowego i wybranych cytokin pod-czas leczenia przeciwdepresyjnego. Neuropsychiatria i Neuropsychologia 2014; 9(2): 1-7.
26. Moghaddam B, Krystal JH Capturing the Angel in “Angel Dust”: Twenty Years of Translational Neuroscience Studies of nmda Re-ceptor Antagonists in Animals and Humans, Schizophr Bull (2012) 38 (5): 942-949
27. Eller T, Vasar V, Shlik J, Maron E. Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008; 32(2): 445–450.
28. Manikowska K, Mikołajczyk M, Mikołajczak PŁ, Bobkiewicz-Kozłowska T. The influence of mianserin on TNF-α, IL-6 and IL-10 serum levels in rats under chronic mild stress. Pharmacol Rep. 2014; 66(1): 22–27.
29. Służewska A, Rybakowski JK, Laciak M, Mackiewicz A, Sobieska M, Wiktorowicz K. Interleukin-6 serum levels in depressed pa-tients before and after treatment with fluoxetine. Ann. NY Acad. Sci. 1995; 762: 474–476.30. Basterzi AD, Aydemir C, Kisa C, Aksaray S, Tuzer V, Yazici K i wsp. IL-6 levels decrease with SSRI treatment in patients with major depres-sion. Hum. Psychopharmacol. Clin. Exp. 2005; 20(7): 473–476.
30. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H. Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 2000; 22(4): 370–379.
31. Lehtimäki K, Keränen T, Huuhka M, Palmio J, Hurme M, Leinonen E i wsp. Increase in plasma proinflammatory cytokines after elec-troconvulsive therapy in patients with depressive disorder. J ECT. 2008; 24(1): 88–91.
32. Kocki T, Wnuk S, Kloc R, Kocki J, Owe-Larsson B, Urbańska EM. New insight into the antidepressants action: modulation of kynurenine pathway by increasing the kynurenic acid/3-hydroxykynurenine ra-tio. J. Neural. Transm. 2012;119(2): 235–243.
33. Zyss T. elektrowstrząsy: wprowadzenie do bioelektrycznej natury zaburzeń depresyjnych. Warszawa: Elmico; 2009.
34. Turski WA, Gramsbergen JB, Traitler H, Schwarcz R. Rat brain slices produce and liberate kynurenic acid upon exposure to L-kynurenine. J. Neurochem. 1989; 52: 1629–1636.
35. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 1979; 134: 382–389.
36. Stanisz A. Przystępny kurs statystyki z zastosowaniem STATI-STICA PL na przykładach z medycyny. Kraków: StatSoft; 2006.
Downloads
Published
Issue
Section
License
Copyright (c) 2016 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.