Rozwój metabolicznego stłuszczenia wątroby podczas farmakoterapii zaburzeń psychicznych – przegląd literatury

Autor

DOI:

https://doi.org/10.2478/cpp-2022-0013

Słowa kluczowe:

insulinooporność, leki przeciwpsychotyczne, metaboliczne stłuszczenie wątroby, niealkoholowe stłuszczenie wątroby, zespół metaboliczny

Abstrakt

Wstęp. Metaboliczna stłuszczeniowa choroba wątroby (Metabolic-associated Fatty Liver Disease, MAFLD) jest pojęciem wprowadzonym dla niealkoholowej stłuszczeniowej choroby wątroby (Non-alcoholic Fatty Liver Disease, NAFLD), które podkreśla jej związek ze składowymi zespołu metabolicznego (Metabolic Syndrome, MetS). MAFLD staje się istotnym klinicznie problemem ze względu na swój coraz większy udział w patogenezie kryptogennej marskości wątroby.

Materiał i metody. Powstała praca jest przeglądem najistotniejszych informacji na temat ryzyka rozwoju MAFLD w kontekście stosowania poszczególnych grup leków psychotropowych. Przedstawiono epidemiologię, ze szczególnym zwróceniem uwagi na populację osób leczonych psychiatrycznie, patofizjologię oraz doniesienia naukowe analizujące wpływ poszczególnych leków psychotropowych na rozwój MAFLD.

Wyniki. Lekami, które w największym stopniu mogą mieć wpływ na rozwój MAFLD są atypowe leki przeciwpsychotyczne, szczególnie olanzapina, oraz stabilizatory nastroju -głównie kwas walproinowy. Ich działanie jest pośrednie i polega na dysregulacji gospodarki węglowodanowej i lipidowej organizmu.

Wnioski. Populacja osób leczonych psychiatrycznie jest szczególnie narażona na rozwój MAFLD. U podłoża tego zaburzenia leży sama specyfika chorób psychicznych, nieprawidłowe żywienie, niski poziom aktywności fizycznej, czy skłonność do uzależnień. Również negatywny wpływ stosowanych leków psychotropowych na metabolizm ustrojowy przyczynia się pośrednio do rozwoju MAFLD. W celu prewencji stłuszczenia wątroby należy regularnie kontrolować parametry metaboliczne i wątrobowe, a także poddawać pacjentów przesiewowemu badaniu USG wątroby. Istotne są również działania profilaktyczne ze strony specjalistów, obejmujące edukację pacjentów i uwrażliwianie ich na prawidłowy styl życia.

Bibliografia

1. Hsu JH, Chien IC, Lin CH, Chou YJ, Chou P. Increased risk of chronic liver disease in patients with schizophrenia: a population-based cohort study. Psychosomatics, 2014; 55(2): 163-71.

2. Targher G, Corey KE, Byrne CD. NAFLD, and cardiovascular and cardiac diseases: Factors influencing risk, prediction and treatment. Diabetes & Metabolism, 2021; 47(2): 101215.

3. Soto-Angona Ó, Anmella G, Valdés-Florido MJ, De Uribe-Viloria N, Carvalho AF, Penninx BWJH, et al. Non-alcoholic fatty liver disease (NAFLD) as a neglected metabolic companion of psychiatric disorders: common pathways and future approaches. BMC Medicine, 2020; 18(1): 261.

4. Penninx BWJH, Lange SMM. Metabolic syndrome in psychiatric patients: overview, mechanisms, and implications. Dialogues in Clinical Neuroscience, 2018; 20(1): 63-73.

5. Carrier P, Debette-Gratien M, Girard M, Jacques J, Nubukpo P, Loustaud-Ratti V. Liver Illness and Psychiatric Patients. Hepatitis Monthly, 2016; 16(12): 41564.

6. https://www.idf.org/ [home page on the Internet]. International Diabetes Federation; 2006 [updated July 29, 2020; cited June 14, 2022]. Accesible at: https://www.idf.org/e-library/consensus¬st atement s/60-idfconsensus-worldwide-def initionof-the¬metabolic-syndrome.html

7. Loomba R, Lim JK, Patton H, El-Serag HB. AGA Clinical Practice Update on Screening and Surveillance for Hepatocellular Carcinoma in Patients With Nonalcoholic Fatty Liver Disease: Expert Review. Gastroenterology, 2020; 158(6): 1822-1830.

8. https://empendium.com/mcmtextbook/ [home page on the Internet]. McMaster Textbook of Internal Medicine; 2020. [updated July 7, 2019; cited May 31, 2022]. Accesible at: https:// empendium.com/mcmtextbook/chapter/B31.II.7.11

9. Allen AM, Hicks SB, Mara KC, Larson JJ, Therneau TM. The risk of incident extrahepatic cancers is higher in non-alcoholic fatty liver disease than obesity - A longitudinal cohort study. Journal of Hepatology, 2019; 71(6): 1229-1236.

10. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. Journal of Hepatology, 2020; 73(1): 202-209.

11. Lin S, Huang J, Wang M, Kumar R, Liu Y, Liu S, et al. Comparison of MAFLD and NAFLD diagnostic criteria in real world. Liver international: Official Journal of the International Association for the Study of the Liver, 2020; 40(9): 2082-2089.

12. Zubair R, Mirza M, Iftikhar J, Saeed N. Frequency of incidental fatty liver on ultrasound and its association with diabetes mellitus and hypertension. Pakistan Journal of Medical Sciences, 2018; 34(5): 1137-1141.

13. Chalasani N, Younossi Z, Lavine JE, Charlton M, Cusi K, Rinella M, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology, 2018; 67(1): 328-357.

14. Papatheodoridi M, Cholongitas E. Diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Concepts. Current Pharmaceutical Design, 2018; 24(38): 4574-4586.

15. Lonardo A, Nascimbeni F, Ballestri S, Fairweather DL, Win S, Than TA, et al. Sex Differences in NAFLD: State of the Art and Identification of Research Gaps. Hepatology, 2019; 70(4): 1457- 1469.

16. 16. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology, 2016; 64(1): 73-84.

17. Ma Q, Yang F, Ma B, Jing W, Liu J, Guo M, et al. Prevalence of nonalcoholic fatty liver disease in mental disorder inpatients in China: an observational study. Hepatology International, 2021; 15(1): 127-136.

18. Vancampfort D, Stubbs B, Mitchell AJ, De Hert M, Wampers M, Ward PB, et al. Risk of metabolic syndrome and its components in people with schizophrenia and related psychotic disorders, bipolar disorder and major depressive disorder: a systematic review and meta-analysis. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 2015; 14(3): 339-347.

19. Gu Y, Zhang W, Hu Y, Chen Y, Shi J. Association between nonalcoholic fatty liver disease and depression: A systematic review and meta-analysis of observational studies. Journal of Affective Disorders, 2022; 301: 8-13.

20. Godin O, Leboyer M, Olié E, Belzeaux R, Bellivier F, Loftus J, et al. Non-alcoholic fatty liver disease in a sample of individuals with bipolar disorders: results from the FACE-BD cohort. Acta Psychiatrica Scandinavica, 2021; 143(1): 82-91.

21. Carr RM, Oranu A, Khungar V. Non-alcoholic fatty liver disease: Pathophysiology and management. Gastroenterology Clinics of North America, 2016; 45(4): 639-652.

22. Chang Y, Jung HS, Cho J, Zhang Y, Yun KE, Lazo M, et al. Metabolically Healthy Obesity and the Development of Nonalcoholic Fatty Liver Disease. The American Journal of Gastroenterology, 2016; 111(8): 1133-1140.

23. Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinologica, 2017; 42(2): 92-108.

24. Page KA, Chan O, Arora J, Belfort-DeAguiar R, Dzuira J, Roehmholdt B, et al. Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA, 2013; 309(1): 63-70.

25. Teff KL, Elliott SS, Tschöp M, Kieffer TJ, Rader D, Heiman M, et al. Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women. The Journal of Clinical Endocrinology and Metabolism, 2004; 89(6): 2963-2972.

26. Mota M, Banini BA, Cazanave SC, Sanyal AJ. Molecular mechanisms of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism, 2016; 65(8): 1049-61.

27. Caviglia GP, Rosso C, Fagoonee S, Saracco GM, Pellicano R. Liver fibrosis: the 2017 state of art. Panminerva Medica, 2017; 59(4): 320-31.

28. Mendez-Sanchez N, Cruz-Ramon VC, Ramirez-Perez OL, Hwang JP, Barranco-Fragoso B, Cordova-Gallardo J. New Aspects of Lipotoxicity in Nonalcoholic Steatohepatitis. International Journal of Molecular Sciences, 2018;19(7): 2034.

29. Tordjman J, Guerre-Millo M, Clément K. Adipose tissue inflammation and liver pathology in human obesity. Diabetes & Metabolism, 2008; 34(6 Pt 2): 658-663.

30. Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. Resistin, an adipokine with potent proinflammatory properties. Journal of Immunology, 2005; 174(9): 5789-5795.

31. Bertolani C, Sancho-Bru P, Failli P, Bataller R, Aleffi S, DeFranco R, et al. Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. The American Journal of Pathology, 2006; 169(6): 2042-2053.

32. Jiang LJ, Li JL, Hong XF, Li YM, Zhang BL. Patients with nonalcoholic fatty liver disease display increased serum resistin levels and decreased adiponectin levels. European Journal of Gastroenterology & Hepatology, 2009; 21(6): 662-666.

33. Bugianesi E, Pagotto U, Manini R, Vanni E, Gastaldelli A, De Iasio R, et al. Plasma adiponectin in nonalcoholic fatty liver is related to hepatic insulin resistance and hepatic fat content, not to liver disease severity. The Journal of Clinical Endocrinology and Metabolism, 2005; 90(6): 3498-3504.

34. Procaccini C, Galgani M, De Rosa V, Carbone F, Rocca C La, Ranucci G, et al. Leptin: The Prototypic Adipocytokine and its Role in NAFLD. Current Pharmaceutical Design, 2010; 16(17): 1902-1912.

35. Kořínková L, Pražienková V, Černá LC, A. Karnošová, B. Železná, J. Kuneš , et al. Pathophysiology of NAFLD and NASH in Experimental Models: The Role of Food Intake Regulating Peptides, Frontiers in Endocrinology, 2020; 11: 597583.

36. Jiménez-Cortegana C, García-Galey A, Tami M, Del Pino P, Carmona I, López S, et al. Role of Leptin in Non-Alcoholic Fatty Liver Disease. Biomedicines, 2021; 9(7): 762.

37. Poniachik J, Csendes A, Díaz JC, Rojas J, Burdiles P, Maluenda F, et al. Increased production of IL-1alpha and TNF-alpha in lipopolysaccharide-stimulated blood from obese patients with non-alcoholic fatty liver disease. Cytokine. 2006; 33(5): 252-257.

38. Cressman DE, Greenbaum LE, DeAngelis RA, Ciliberto G, Furth EE, Poli V, et al. Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice. Science, 1996; 274(5291): 1379-1383.

39. Roh YS, Seki E. Toll-like receptors in alcoholic liver disease, non-alcoholic steatohepatitis and carcinogenesis. Journal of Gastroenterology and Hepatology, 2013; 28 Suppl 1(0 1): 38-42.

40. Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, et al. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 2009; 49(6): 1877-1887.

41. Giorgio V, Miele L, Principessa L, Ferretti F, Villa MP, Negro V, et al. Intestinal permeability is increased in children with non¬alcoholic fatty liver disease, and correlates with liver disease severity. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver, 2014; 46(6): 556-60.

42. Gao B, Tsukamoto H. Inflammation in Alcoholic and Nonalcoholic Fatty Liver Disease: Friend or Foe? Gastroenterology, 2016; 150(8): 1704-1709.

43. Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nature Medicine, 2018; 24(7): 908-922.

44. Hernaez R, McLean J, Lazo M, Brancati FL, Hirschhorn JN, Borecki IB, et al. Association between variants in or near PNPLA3, GCKR, and PPP1R3B with ultrasound-defined steatosis based on data from the third National Health and Nutrition Examination Survey. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, 2013; 11(9): 1183-1190.e2.

45. Coelho WS, Da Silva D, Marinho-Carvalho MM, Sola-Penna M. Serotonin modulates hepatic 6-phosphofructo-1-kinase in an insulin synergistic manner. The International Journal of Biochemistry & Cell Biology, 2012; 44(1): 150-157.

46. Watanabe H, Rose MT, Aso H. Role of peripheral serotonin in glucose and lipid metabolism. Current Opinion in Lipidology, 2011; 22(3): 186-191.

47. Martin AM, Young RL, Leong L, Rogers GB, Spencer NJ, Jessup CF, et al. The Diverse Metabolic Roles of Peripheral Serotonin. Endocrinology. 2017; 158(5): 1049-1063.

48. Oh CM, Namkung J, Go Y, Shong KE, Kim K, Kim H, et al. Regulation of systemic energy homeostasis by serotonin in adipose tissues. Nature communications, 2015; 6: 6794.

49. Niture S, Gyamfi MA, Kedir H, Arthur E, Ressom H, Deep G, et al. Serotonin induced hepatic steatosis is associated with modulation of autophagy and notch signaling pathway. Cell Communication and Signaling, 2018; 16(1): 78.

50. Rozenblit-Susan S, Chapnik N, Froy O. Metabolic effect of fluvoxamine in mouse peripheral tissues. Molecular and Cellular Endocrinology, 2016; 424: 12-22.

51. Lara N, Baker GB, Archer SL, Le Mellédo JM. Increased cholesterol levels during paroxetine administration in healthy men. The Journal of Clinical Psychiatry, 2003; 64(12): 1455-1459.

52. Bailey DL, Le Mellédo JM. Effects of selective serotonin reuptake inhibitors on cholesterol levels in patients with panic disorder. Journal of Clinical Psychopharmacology, 2003; 23(3): 317-319.

53. Osawa Y, Kanamori H, Seki E, Hoshi M, Ohtaki H, Yasuda Y, et al. L-tryptophan-mediated enhancement of susceptibility to nonalcoholic fatty liver disease is dependent on the mammalian target of rapamycin. The Journal of Biological Chemistry, 2011; 286(40): 34800-34808.

54. Stewart KE, Levenson JL. Psychological and Psychiatric Aspects of Treatment of Obesity and Nonalcoholic Fatty Liver Disease HHS Public Access. Clinics in Liver Disease, 2012; 16(3): 615-629.

55. Kampa JM, Sahin M, Slopianka M, Giampà M, Bednarz H, Ernst R, et al. Mass spectrometry imaging reveals lipid upregulation and bile acid changes indicating amitriptyline induced steatosis in a rat model. Toxicology letters, 2020; 325: 43-50.

56. Chang GR, Hou PH, Yang WC, Wang CM, Fan PS, Liao HJ, et al. Doxepin Exacerbates Renal Damage, Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Urinary Chromium Loss in Obese Mice. Pharmaceuticals, 2021; 14(3): 267.

57. Lu Z, Li Y, Syn WK, Wang Z, Lopes-Virella MF, Lyons TJ, et al. Amitriptyline inhibits nonalcoholic steatohepatitis and atherosclerosis induced by high-fat diet and LPS through modulation of sphingolipid metabolism. American Journal of physiology. Endocrinology and metabolism, 2020; 318(2): E131-E144.

58. Liangpunsakul S, Rahmini Y, Ross RA, Zhao Z, Xu Y, Crabb DW. Imipramine blocks ethanol-induced ASMase activation, ceramide generation, and PP2A activation, and ameliorates hepatic steatosis in ethanol-fed mice. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2012; 302(5): G515-G523.

59. Chen Z, Liu X, Luo Y, Wang J, Meng Y, Sun L, et al. Repurposing Doxepin to Ameliorate Steatosis and Hyperglycemia by Activating FAM3A Signaling Pathway. Diabetes, 2020; 69(6): 1126-1139.

60. Nicholas LM, Ford AL, Esposito SM, Ekstrom RD, Golden RN. The effects of mirtazapine on plasma lipid profiles in healthy subjects. The Journal of Clinical Psychiatry, 2003; 64(8): 883-889.

61. Yabut JM, Crane JD, Green AE, Keating DJ, Khan WI, Steinberg GR. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocrine Reviews, 2019; 40(4): 1092-1107.

62. Thomas E, Haboubi H, Williams N, Lloyd A, Ch’ng CL. Mirtazapine-induced steatosis. International Journal of Clinical Pharmacology and Therapeutics, 2017; 55(7): 630-632.

63. Wu CF, Hou PH, Mao FC, Su YC, Wu CY, Yang WC, et al. Mirtazapine Reduces Adipocyte Hypertrophy and Increases Glucose Transporter Expression in Obese Mice. Animals, 2020; 10(8): 1423.

64. El-Khatib F, Rauchenzauner M, Lechleitner M, Hoppichler F, Naser A, Waldmann M, et al. Valproate, weight gain and carbohydrate craving: a gender study. Seizure, 2007; 16(3): 226-232.

65. Farinelli E, Giampaoli D, Cenciarini A, Cercado E, Verrotti A. Valproic acid and nonalcoholic fatty liver disease: A possible association? World Journal of Hepatology, 2015; 7(9): 1251-1257.

66. Brown R, Imran SA, Ur E, Wilkinson M. Valproic acid and CEBPalpha-mediated regulation of adipokine gene expression in hypothalamic neurons and 3T3-L1 adipocytes. Neuroendocrinology, 2008; 88(1):25-34.

67. Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins. Trends in endocrinology and metabolism: TEM, 2006; 17(9): 365-371.

68. Rehman T, Sachan D, Chitkara A. Serum Insulin and Leptin Levels in Children with Epilepsy on Valproate-associated Obesity. Journal of Pediatric Neurosciences, 2017; 12(2): 135¬137.

69. Yoshikawa H, Tajiri Y, Sako Y, Hashimoto T, Umeda F, Nawata H. Effects of free fatty acids on beta-cell functions: a possible involvement of peroxisome proliferator-activated receptors alpha or pancreatic/duodenal homeobox. Metabolism: clinical and experimental, 2001; 50(5):613-618.

70. Wong HY, Chu TS, Lai JC, Fung KP, Fok TF, Fujii T, et al. Sodium valproate inhibits glucose transport and exacerbates Glut1¬deficiency in vitro. Journal of Cellular Biochemistry, 2005; 96(4): 775-785.

71. Denis McGarry J. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes, 2002; 51(1): 7-18.

72. Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes, 2003; 52(1): 1-8.

73. Aycicek A, Iscan A. The effects of carbamazepine, valproic acid and phenobarbital on the oxidative and antioxidative balance in epileptic children. European Neurology, 2007; 57(2): 65-69.

74. Shi Y, Kanaani J, Menard-Rose V, Ma YH, Chang PY, Hanahan D, et al. Increased expression of GAD65 and GABA in pancreatic beta-cells impairs first-phase insulin secretion. American Journal of Physiology. Endocrinology and Metabolism, 2000; 279(3): E684-E694.

75. Luef GJ, Lechleitner M, Bauer G, Trinka E, Hengster P. Valproic acid modulates islet cell insulin secretion: a possible mechanism of weight gain in epilepsy patients. Epilepsy Research, 2003; 55(1-2): 53-58.

76. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, et al. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochimica et Biophysica Acta, 1998; 1366(1-2): 177-196.

77. Gungor S, Yücel G, Akinci A, Tabel Y, Ozerol IH, Yologlu S. The role of ghrelin in weight gain and growth in epileptic children using valproate. Journal of Child Neurology, 2007; 22(12): 1384-1388.

78. Robinson KA, Ball LE, Buse MG. Reduction of O-GlcNAc protein modification does not prevent insulin resistance in 3T3-L1 adipocytes. American Journal of Physiology. Endocrinology and Metabolism, 2007; 292(3): E884-E890.

79. Greco R, Latini G, Chiarelli F, Iannetti P, Verrotti A. Leptin, ghrelin, and adiponectin in epileptic patients treated with valproic acid. Neurology, 2005; 65(11): 1808-1809.

80. Satapathy SK, Kuwajima V, Nadelson J, Atiq O, Sanyal AJ. Drug-induced fatty liver disease: An overview of pathogenesis and management. Annals of Hepatology, 2015; 14(6): 789-806.

81. Luef GJ, Waldmann M, Sturm W, Naser A, Trinka E, Unterberger I, et al. Valproate therapy and nonalcoholic fatty liver disease, Annals of Neurology. 2004; 55(5): 729-732.

82. Luef G, Rauchenzauner M, Waldmann M, Sturm W, Sandhofer A, Seppi K, et al. Non-alcoholic fatty liver disease (NAFLD), insulin resistance and lipid profile in antiepileptic drug treatment. Epilepsy Research, 2009; 86(1): 42-47.

83. Grieco A, Alfei B, Di Rocco P, Miele L, Biolcati G, Griso D, et al. Non-alcoholic steatohepatitis induced by carbamazepine and variegate porphyria. European Journal of Gastroenterology & Hepatology, 2001; 13(8): 973-975.

84. Yilmaz E, Doşan Y, Gürgöze MK, Güngör S. Serum lipid changes during anticonvulsive treatment serum lipids in epileptic children. Acta Neurologica Belgica. 2001; 101(4): 217-220.

85. Higuchi S, Yano A, Takai S, Tsuneyama K, Fukami T, Nakajima M, et al. Metabolic Activation and Inflammation Reactions Involved in Carbamazepine-Induced Liver Injury. Toxicological Sciences, 2012; 130(1): 4-16.

86. Kamitaki BK, Minacapelli CD, Zhang P, Wachuku C, Gupta K, Catalano C, et al. Drug-induced liver injury associated with antiseizure medications from the FDA Adverse Event Reporting System (FAERS). Epilepsy & Behavior: E&B, 2021; 117: 107832.

87. Akai S., Oda S., Yokoi T. Strain and interindividual differences in lamotrigine-induced liver injury in mice. Journal of Applied Toxicology: JAT, 2019; 39(3): 451-460.

88. McEvoy GK, American Society of Health-System Pharmacists. AHFS Drug information 2008. Bethesda; American Society of Health-System Pharmacists: 2008.

89. De Hert M, Schreurs V, Vancampfort D, Van Winkel R. Metabolic syndrome in people with schizophrenia: a review. World psychiatry: Official Journal of the World Psychiatric Association (WPA), 2009; 8(1): 15-22.

90. De Hert M, Detraux J, Van Winkel R, Yu W, Correll CU. Metabolic and cardiovascular adverse effects associated with antipsychotic drugs. Nature reviews. Endocrinology, 2011; 8(2): 114-126.

91. Gautam S, Meena PS. Drug-emergent metabolic syndrome in patients with schizophrenia receiving atypical (second¬generation) antipsychotics. Indian Journal of Psychiatry, 2011; 53(2): 128-133.

92. Huang X, Xu M, Chen Y, Peng K, Huang Y, Wang P, et al. Validation of the Fatty Liver Index for Nonalcoholic Fatty Liver Disease in Middle-Aged and Elderly Chinese. Medicine, 2015; 94(40): e1682.

93. Morlán-Coarasa MJ, Arias-Loste MT, Ortiz-García de la Foz V, Martínez-García O, Alonso-Martín C, Crespo J, et al. Incidence of non-alcoholic fatty liver disease and metabolic dysfunction in first episode schizophrenia and related psychotic disorders: a 3-year prospective randomized interventional study. Psychopharmacology, 2016; 233(23-24): 3947-3952.

94. Rostama B, Beauchemin M, Bouchard C, Bernier E, Vary CPH, May M, et al. Understanding Mechanisms Underlying Non-Alcoholic Fatty Liver Disease (NAFLD) in Mental Illness: Risperidone and Olanzapine Alter the Hepatic Proteomic Signature in Mice. International Journal of Molecular Sciences, 2020; 21(24): 1-20.

95. Soliman HM, Wagih HM, Attia GM, Algaidi SA. Light and electron microscopic study on the effect of antischizophrenic drugs on the structure of seminiferous tubules of adult male albino rats. Folia Histochemica et Cytobiologica, 2014; 52(4): 335-349.

96. Isaacson RH, Beier JI, Khoo NK, Freeman BA, Freyberg Z, Arteel GE. Olanzapine-induced liver injury in mice: aggravation by high-fat diet and protection with sulforaphane. The Journal of Nutritional Biochemistry, 2020; 81: 108399.

97. Li R, Zhu W, Huang P, Yang Y, Luo F, Dai W, et al. Olanzapine leads to nonalcoholic fatty liver disease through the apolipoprotein A5 pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021; 141: 111803.

98. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury [home page on the Internet]. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012 [updated June 02, 2022; cited July 04, 2022]. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK547852/

99. Chang GR, Liu HY, Yang WC, Wang CM, Wu CF, Lin JW, et al. Clozapine worsens glucose intolerance, nonalcoholic fatty liver disease, kidney damage and retinal injury and increases renal reactive oxygen species production and chromium loss in obese mice. International Journal of Molecular Sciences, 2021; 22(13): 6680.

100. Tsai HP, Hou PH, Mao FC, Chang CC, Yang WC, Wu CF, et al. Risperidone Exacerbates Glucose Intolerance, Nonalcoholic Fatty Liver Disease, and Renal Impairment in Obese Mice. International Journal of Molecular Sciences, 2021; 22(1): 1-21.

101. Perez-Iglesias R, Vazquez-Barquero JL, Amado JA, Berja A, Garcia-Unzueta MT, Pelayo-Terán JM, et al. Effect of antipsychotics on peptides involved in energy balance in drug-naive psychotic patients after 1 year of treatment. Journal of clinical Psychopharmacology, 2008; 28(3): 289-295.

Opublikowane

2022-10-11