Znaczenie stresu oksydacyjnego w patogenezie i leczeniu choroby afektywnej dwubiegunowej: przegląd literatury

Autor

DOI:

https://doi.org/10.12923/2353-8627/2024-0018

Słowa kluczowe:

stres oksydacyjny, choroba afektywna dwubiegunowa, redox, peroksydacja lipidów, uszkodzenia białek, antyoksydanty

Abstrakt

Wstęp: Zaburzenie afektywne dwubiegunowe (ChAD), znane również jako choroba maniakalno-depresyjna, jest przewlekłym i nawracającym zaburzeniem psychicznym charakteryzującym się znacznymi zaburzeniami nastroju. Jest to jedna z głównych przyczyn niepełnosprawności na świecie i wiąże się z wysokim ryzykiem samobójstwa. Ostatnie badania podkreślają rolę stresu
oksydacyjnego (OS) w patogenezie ChAD. Zaburzenie równowagi pro/antyoksydacyjnej organizmu wpływają niekorzystnie na procesy komórkowe i molekularne.

Cel: Celem niniejszego przeglądu jest synteza obecnego stanu wiedzy na temat roli OS w etiologii i przebiegu ChAD, z uwzględnieniem kluczowych biomarkerów oraz potencjalnych interwencji terapeutycznych.

Metody: Przeprowadzono przegląd literatury naukowej, obejmujący artykuły opublikowane w latach 2000–2024. Wyszukiwanie przeprowadzono w bazach danych PubMed, Scopus oraz Web of Science, wykorzystując następujące słowa kluczowe: „bipolar disorder”, „oxidative stress”, „antioxidants”, „biomarkers”, „mitochondrial dysfunction”, „redox homeostasis”, „treatment”.

Wyniki: Wyniki wskazują, że u pacjentów z ChAD obserwuje się podwyższone poziomy markerów OS, w tym zwiększoną peroksydację lipidów, zmienioną aktywność enzymów antyoksydacyjnych oraz zaburzenia homeostazy redoks. Leczenie litem i innymi stabilizatorami nastroju może modulować poziomy wskaźników OS, co jest jednym z potencjalnych mechanizmów działania leków. Jednakże niejednoznaczne dane sugerują potrzebę dalszych badań w celu wyjaśnienia związku między OS a ChAD.

Wnioski: OS odgrywa istotną rolę w patofizjologii ChAD, oferując potencjalne kierunki dla interwencji terapeutycznych. Zrozumienie złożonych interakcji między OS a ChAD może prowadzić do opracowania bardziej ukierunkowanych terapii, mających na celu redukcję uszkodzeń oksydacyjnych i poprawę stanu zdrowia pacjentów.

Bibliografia

1. Ferrari AJ, Stockings E, Khoo JP, Erskine HE, Degenhardt L, Vos T, Whiteford HA. The prevalence and burden of bipolar disorder: findings from the Global Burden of Disease Study 2013. Bipolar Disord. 2016 Aug;18(5):440-50. Review match

2. Scaini G, Valvassori SS, Diaz AP, Lima CN, Benevenuto D, Fries GR, Quevedo J. Neurobiology of bipolar disorders: a review of genetic components, signaling pathways, biochemical changes, and neuroimaging findings. Braz J Psychiatry. 2020 Sep-Oct;42(5):536-551. Review match

3. Jain A, Mitra P.,New York University School of Medicine. Last Update: February 20, 2023 Book. Bipolar Disorder In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan.2023 Feb 20.

4. Rybakowski J. Ethiopathogenesis of bipolar affective disorder - the state of the art for 2021.Psychiatr Pol. 2021 Jun 30;55(3):481-496. Review match

5. Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, et al. ENIGMA Bipolar Disorder Working Group. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp. 2022 Jan;43(1):56-82.

6. Ashok AH, Marques TR, Jauhar S, Nour MM, Goodwin GM, Young AH, Howes OD. The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry. 2017 May;22(5):666-679. Epub 2017 Mar 14. Review match

7. Sluzewska A, Rybakowski J, Bosmans E, Sobieska M, Berghmans R, Maes M, et al. Indicators of immune activation in major depression. Psychiatry Res. 1996; 64(3): 161-167. Review match

8. Fries GR, Walss-Bass C, Bauer ME, Teixeira AL. Revisiting inflammation in bipolar disorder.Pharmacol. Biochem. Behav. 2019;177:12-19. Review match

9. Romo-Nava F, Blom TJ, Cuellar-Barboza AB, Winham SJ, Colby CL, Nunez NA et al. Evening chronotype as a discrete clinical subphenotype in bipolar disorder. J. Affect. Disord.2020; 266: 556-562. Review match

10. Kato T. Current understanding of bipolar disorder: Toward integration of biological basis and treatment strategies. Psychiatry Clin Neurosci. 2019 Sep;73(9):526-540. Review match

11. Colasanti A, Bugiardini E, Amawi S, Poole OV, Skorupinska I, Skorupinska M et al. Primary mitochondrial diseases increase susceptibility to bipolar affective disorder. J. Neurol.Neurosurg. Psychiatry 2020; 91(8): 892-894. Review match

12. Goes F. Diagnosis and management of bipolar disorders.BMJ. 2023 Apr 12:381:e073591. Review match

13. Nandi A., Yan L.-J., Jana C.K., Das N. (2019). Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxidative Medicine and Cellular Longevity, 2019, 1-19. Review match

14. Forman H.J., Zhang H. (2021). Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy. Nature Reviews Drug Discovery, 20(9), 689-709. Review match

15. Gutowicz M. (2011). The influence of reactive oxygen species on the central nervous system. Proceedings of Hygiene and Experimental Medicine, 65, 104-113. Review match

16. Puzanowska-Tarasiewicz H., Starczewska B., Kuźmicka L. (2008). Reactive oxygen species. Bromat. Chem. Toxicol., XLI, pp. 1007-1015.

17. Liu T., Sun L., Zhang Y., Wang Y., Zheng J. (2022). Imbalanced GSH/ROS and sequential cell death. Journal of Biochemical and Molecular Toxicology, 36(1), e22942. Review match

18. Pérez-Torres I., Castrejón-Téllez V., Soto M. E., Rubio-Ruiz M. E., Manzano-Pech L., Guarner-Lans V. (2021). Oxidative Stress, Plant Natural Antioxidants, and Obesity. International Journal of Molecular Sciences, 22(4), 1786. Review match

19. Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., Telser J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1), 44-84. Review match

20. Silvestrini A., Meucci E., Ricerca B.M., Mancini A. (2023). Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. International Journal of Molecular Sciences, 24(13), 10978. Review match

21. Huang T.-T., Zou Y., Corniola R. (2012). Oxidative stress and adult neurogenesis-Effects of radiation and superoxide dismutase deficiency. Seminars in Cell & Developmental Biology, 23(7), 738-744. Review match

22. Olechnowicz J., Tinkov A., Skalny A., Suliburska J. (2018). Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. The Journal of Physiological Sciences, 68(1), 19-31. Review match

23. Kieliszek M., Blażejak S. (2016). Current Knowledge on the Importance of Selenium in Food for Living Organisms: A Review. Molecules, 21(5), Article 5. Review match

24. Jomova K., Jenisova Z., Feszterova M., Baros S., Liska J., Hudecova D., Rhodes C.J., Valko M. (2011). Arsenic: Toxicity, oxidative stress and human disease: Toxicity of arsenic. Journal of Applied Toxicology, n/a-n/a. Review match

25. Blanchard-Fillion B., Prou D., Polydoro M., Spielberg D., Tsika E., Wang Z., Hazen S.L., Koval M., Przedborski S., Ischiropoulos H. (2006). Metabolism of 3-Nitrotyrosine Induces Apoptotic Death in Dopaminergic Cells. Journal of Neuroscience, 26(23), 6124-6130. Review match

26. Sakano N., Takahashi N., Wang D.-H., Sauriasari R., Takemoto K., Kanbara S., Sato Y., Takigawa T., Takaki J., Ogino K. (2009). Plasma 3-nitrotyrosine, urinary 8-isoprostane and 8-OHdG among healthy Japanese people. Free Radical Research, 43(2), 183-192. Review match

27. Valvassori S.S., Bavaresco D.V., Feier G., Cechinel-Recco K., Steckert A.V., Varela et al, (2018). Increased oxidative stress in the mitochondria isolated from lymphocytes of bipolar disorder patients during depressive episodes. Psychiatry Research, 264, 192-201. Review match

28. Zhang H., Forman H.J. (2017). 4-hydroxynonenal-mediated signaling and aging. Free Radical Biology and Medicine, 111, 219-225. Review match

29. Couto N., Wood J., Barber J. (2016). The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radical Biology and Medicine, 95, 27-42. Review match

30. Wala K., Zieliński K., Zdrojewicz Z. (2018). The role of selenium in the pathogenesis of thyroid diseases. Family Medicine, 21(2A).

31. Lubos E., Loscalzo J., Handy D.E. (2011). Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants & Redox Signaling, 15(7), 1957-1997. Review match

32. Silvestrini A., Meucci E., Ricerca B.M., Mancini A. (2023). Total Antioxidant Capacity: Biochemical Aspects and Clinical Significance. International Journal of Molecular Sciences, 24(13), 10978. Review match

33. Mazur-Zielińska H., Zielinski M., Pilarz Ł., Karbowska D., Birkner E. (2015). Total antioxidant capacity (TAC) and total oxidative status (TOS) in children with juvenile idiopathic arthritis - preliminary report. Pediatria Polska, 90(6), 459-463. Review match

34. Całyniuk B., Grochowska-Niedworok E., Walkiewicz K., Kawecka S., Popiołek E., Fatyga E. (2016). Malondialdehyde (MDA) - product of lipid peroxidation as marker of homeostasis disorders and aging. Annales Academiae Medicae Silesiensis, 70, 224-228. Review match

35. Ruizz-Ojeda FJ, Olza J, Gil A, Aguilera C. (2018) Oxidative Stress and Inflammation in Obesity and Metabolic Syndrome.Obesity. Oxidative Stress and Dietary Antioxidants2018, Pages 1-15. Review match

36. Gherghina E-M,Peride I, Tiglis M, Neagu T, Niculae A, Checherita I. (2022) Uric Acid and Oxidative Stress-Relationship with Cardiovascular, Metabolic, and Renal Impairmen. International Journal of Molecular Sciences 2022 Mar;23(6):3188. Review match

37. Klisic A., Kavaric N., Vujcic S., Spasojevic-Kalimanovska V., Kotur-Stevuljevic J., Ninic A. (2020). Total oxidant status and oxidative stress index as indicators of increased Reynolds risk score in postmenopausal women. European Review for Medical and Pharmacological Sciences, 24(19), 10126-10133. Review match

38. Piechuta-Królczak, B., Kasperski, J., Trzeciak, H., Wyszyńska, M. (2022). Oxidative stress, saliva, and removable dentures. Prosthodontics, 72(4), 350-359. Review match

39. Perrone A., Giovino A., Benny J., Martinelli F. (2020). Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxidative Medicine and Cellular Longevity, 2020, 1-18. Review match

40. Ou H., Huang Z., Mo Z., Xiao J. (2017). The Characteristics and Roles of Advanced Oxidation Protein Products in Atherosclerosis. Cardiovascular Toxicology, 17(1), 1-12. Review match

41. Erdogan H.K., Bulur I., Kocaturk E., Saracoglu Z.N., Alatas O., Bilgin M. (2018). Advanced oxidation protein products and serum total oxidant/antioxidant status levels in rosacea. Advances in Dermatology and Allergology, 35(3), 304-308. Review match

42. Maina M.B., Al-Hilaly Y.K., Serpell L.C. (2023). Dityrosine cross-linking and its potential roles in Alzheimer's disease. Frontiers in Neuroscience, 17, 1132670. Review match

43. Al-Hilaly Y.K., Williams T.L., Stewart-Parker M., Ford L., Skaria E., Cole M., Bucher W.G., Morris K. L., Sada A.A., Thorpe J.R., Serpell L.C. (2013). A central role for dityrosine crosslinking of Amyloid-β in Alzheimer's disease. Acta Neuropathologica Communications, 1(1), 83. Review match

44. Mor A., Tankiewicz-Kwedlo A., Krupa A., Pawlak D. (2021). Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells, 10(7), 1603. Review match

45. Hajsl M., Hlavackova A., Broulikova K., Sramek M., Maly M., Dyr J.E., Suttnar J. (2020). Tryptophan Metabolism, Inflammation, and Oxidative Stress in Patients with Neurovascular Disease. Metabolites, 10(5), 208. Review match

46. Wigner P., Sliwinski T. (2022). The role of oxidative and nitrative stress and the tryptophan catabolite pathway in the pathogenesis of depression. Advances in Biochemistry.

47. Ehrenshaft M., Deterding L.J., Mason R.P. (2015). Tripping up Trp: Modification of protein tryptophan residues by reactive oxygen species, modes of detection, and biological consequences. Free Radical Biology and Medicine, 89, 220-228. Review match

48. de Sousa R, Zarate Jr C, Zanetti M, Costa A, Talib L, Gattaz W, Machado-Vieira R. (2014).Oxidative stress in early stage Bipolar Disorder and the association with response to lithium. Journal of Psychiatric Resarch, Volume 50, March 2014, Pages 36-41. Review match

49. Polat N, Beyaztas H, Aktas S, Maden O, Guler E.(2023). Comparison of oxidative stress parameters, thiol-disulfide homeostasis, and pro-inflammatory cytokine levels in patients with bipolar disorder and their first-degree relatives. J Psychiatr Res 2023 Jun:162:103-112. Review match

50. Khairova R, Pawar R, Salvadore G, Juruena M, de Sousa R,Soeiro-de Souza M. et al. (2011). Effects of lithium on oxidative stress parameters in healthy subjects. Molecular Medicine Reports, 2012 Mar;5(3):680-2. Epub 2011 Dec 22.

51. Chebieb I, Medjati N, Harek Y, Guermouche B, Dali-Sahi M, Kachekouche Y, Benosman C. (2023).Imbalance of Plasma Copper and Zinc Levels and the Association Between the Cu/Zn Ratio and Lipid Peroxidation in Algerian Bipolar Patients. Biological Trace Element Research, 2024 Jun;202(6):2450-2456. Review match

52. Jimenez-Fernandez S, Gurpegui M, Garrote-Rojas D, Gutierrez-Rojas L, Carretero M, Correll C. (2021). Oxidative stress parameters and antioxidants in patients with bipolar disorder: Results from a meta-analysis comparing patients, including stratification by polarity and euthymic status, with healthy controls. Bipolar Disorders. 2021 Mar;23(2):117-129. Review match

53. Madireddy Sahithi, Madireddy Samskruthi. (2022). Therapeutic Interventions to Mitigate Mitochondrial Dysfunction and Oxidative Stress-Induced Damage in Patients with Bipolar Disorder. International Journal of Molecular Sciences, 2022 Feb 6;23(3):1844. Review match

54. Kotzaeroglou A, Tsamesidis I. (2022) The Role of Equilibrium between Free Radicals and Antioxidants in Depression and Bipolar Disorder. Medicines (Basel). 2022 Nov 14;9(11):57. Review match

55. Machado-Vieira R, Courtes A, Zarate Jr C, Henter I, Manji H. (2023). Non-canonical pathways in the pathophysiology and therapeutics of bipolar disorder, Front Neurosci. 2023 Aug 1:17:1228455. Review match

56. Pittas S, Theodoridis X, Haidich A, Bozikas P, Georgios P. (2021). The effect of N-acetylcysteine on bipolar depression: a systematic review and meta-analysis of randomized controlled trials. Psychopharmacology (Berl). 2021 Jul;238(7):1729-1736. Epub 2021 Feb 27. Review match

57. Nery F, Li W, Del Bello M, Welge J. N-acetylcysteine as an adjunctive treatment for bipolar depression: A systematic review and meta-analysis of randomized controlled trials. Bipolar Disorder. 2021 Nov;23(7):707-714. Epub 2021 Jan 15. Review match

58. Faghfouri A, Zarezadeh M, Tavakoli-Rouzbehani O, Radkhakh M, Faghfuri E, Kord-Varkaneh H et al. The effects of N-acetylcysteine on inflammatory and oxidative stress biomarkers: A systematic review and meta-analysis of controlled clinical trials. Europen Journal of Pharrmacology. Volume 884, 5 October 2020, 173368.

Opublikowane

2025-01-09

Jak cytować

Łobejko, Łukasz, Hordejuk, M., Róg, J., & Karakuła-Juchnowicz, H. (2025). Znaczenie stresu oksydacyjnego w patogenezie i leczeniu choroby afektywnej dwubiegunowej: przegląd literatury. Current Problems of Psychiatry, 25, 186-202. https://doi.org/10.12923/2353-8627/2024-0018