Abstract
The aim of this work was to examine the impact of ketoprofen on melanogenesis in cultured human normal melanocytes (HEMn-DP). The WST-1 assay was used to detect ketoprofen cytotoxic effect. It has been demonstrated that ketoprofen induces the loss of melanocytes viability in a concentration–dependent manner. The value of EC50 was found to be 1 mM. It has also been shown that ketoprofen causes inhibition of tyrosinase activity and reduces melanin content in human epidermal melanocytes. The demonstrated inhibitory effect of ketoprofen on melanization process in melanocytes in vitro may explain the potential role of melanin biopolymer in the mechanisms of undesirable phototoxic effects of this drug in vivo, as a result of its accumulation in pigmented tissues.
References
1. Bagheri H. et al.: Photosensitivity to ketoprofen: mechanisms and pharmacoepidemiological data. Drug Saf., 22, 339, 2000.
2. Busca R. et al.: Inhibition of the phosphatidylinositol 3-kinase/p70(S6) - kinase pathway induces B16 melanoma cell differentiation. J. Biol. Chem., 271, 31824, 1996.
3. Buszman E. et al.: Interaction of ketoprofen and paracetamol with melanin in vitro. Ann. Univ. Mariae Curie-Skłodowska Sectio DDD Pharm., 22, 81, 2009.
4. Diaz R.L. et al.: Greater allergenicity of topical ketoprofen in contact dermatitis confirmed by use. Contact Dermatitis, 54, 239, 2006.
5. Foti C. et al.: Photodermatitis caused by oral ketoprofen: two case reports. Contact Dermatitis, 64, 181, 2011.
6. Gillbro J.M., Olsson M.J.: The melanogenesis and mechanisms of skin-lightening agents - existing and new approaches. Int. J. Cosmet. Sci., 33, 210, 2011.
7. Hu D.N., Savage H.E., Roberts J.E.: Uveal melanocytes, ocular pigment epithelium, and Müller cells in culture: in vitro toxicology. Int. J. Toxicol., 21, 465, 2002.
8. Ito S., Wakamatsu K.: Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: a comparative review. Pigment Cell Res., 16, 523, 2003.
9. Izu K. et al.: Photocontact dermatitis to ketoprofen presenting with erythema multiforme. Eur. J. Dermatol., 18, 710, 2008.
10. Jiang S. et al.: Regulation of DHICA-mediated antioxidation by dopachrome tautomerase: implication for skin photoprotection against UVA radiation. Free Radic. Biol. Med., 48, 1144, 2010.
11. Kim D.S. et al.: Inhibitory effects of 4-n-butylresorcinol on tyrosinase activity and melanin synthesis. Biol. Pharm. Bull., 12, 2216, 2005.
12. Knörle R., Schniz E., Feuerstein T.J.: Drug accumulation in melanin: an affinity chromatographic study. J. Chromatogr. Biomed. Sci. Appl. B, 714, 171, 1998.
13. Larsson B.S.: Interaction between chemicals and melanin. Pigment Cell Res., 6, 127, 1993.
14. Otręba M. et al.: Regulation of melanogenesis: the role of cAMP and MITF. Adv. Clin. Exp. Med., 66, 33, 2012.
15. Ozeki H. et al.: Spectrophotometric characterization of eumelanin and pheomelanin in hair. Pigment Cell Res., 9, 265, 1996.
16. Panus C. et al.: Ketoprofen tissue permeation in swine following cathodic iontophoresis. Phys. Ther., 79, 40, 1999.
17. Steinhilber D., Schubert-Zsilavecz M., Roth H.J. (2012). Chemia medyczna. Red. nauk. : Jelińska A., Pałka J., Zając M. MedPharm Polska; p. 652.
18. Sugiura M. et al.: 4 cases of photocontact dermatitis due to ketoprofen. Contact Dermatitis, 43, 16, 2000.
19. Plonka P.M. et al.: What are melanocytes really doing all day long...? Exp. Dermatol., 18, 799, 2009.
20. Tokura Y.: Immune responses to photohaptens: implications for the mechanisms of photosensitivity to exogenous agents. J. Dermatol. Sci., 23 Suppl 1: S6, 2000.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.
Copyright (c) 2012 Authors