Structural and functional changes in the central nervous system in the course of anorexia nervosa
DOI:
https://doi.org/10.1515/cpp-2017-0025Keywords:
anorexia nervosa, neuroimaging, central nervous system, limbic system, deep brain stimulation, brain-derived neurotrophic factorAbstract
New achievements within structural and functional imaging of central nervous system offer a basis for better understanding of the mechanisms underlying many mental disorders. In everyday clinical practice, we encounter many difficulties in the therapy of eating disorders. They are caused by a complex psychopathological picture, varied grounds of the problems experienced by patients, often poor motivation for active participation in the treatment process, difficulties in communication between patients and therapeutic staff, and various biological conditions of eating disorders. In this paper, the latest reports on new concepts and methods of diagnosis and treatment of anorexia nervosa have been analyzed. The selection of the analyzed publications was based on the criteria taking into account the time of publication, the size of research cohorts, as well as the experience of research teams in the field of nutritional disorders, confirmed by the number of works and their citations. The work aims to spread current information on anorexia nervosa neurobiology that would allow for determining the brain regions involved in the regulation of food intake, and consequently that may be a potential place where neurobiochemical processes responsible for eating disorders occur. In addition, using modern methods of structural imaging, the authors want to show some of the morphometric variations, particularly within white matter, occurring in patients suffering from anorexia nervosa, as well as those evaluated with magnetoencephalography of processes associated with the neuronal processing of information related to food intake. For example as regards anorexia nervosa, it was possible to localize the areas associated with eating disorders and broaden our knowledge about the changes in these areas that cause and accompany the illness. The described in this paper research studies using diffusion MRI fiber tractography showed the presence of changes in the white matter pathways of the brain, especially in the corpus callosum, which indicate a reduced content of myelin. These changes probably reflect malnutrition, and directly represent the effect of lipid deficiency. This leads to a weakening of the structure, and even cell death. In addition, there are more and more reports that show the normal volume of brain cells in patients with long-term remission of anorexia. It was also shown that in patients in remission stage there are functional changes within the amygdala in response to a task not related symptomatologically with anorexia nervosa. The appearing in the scientific literature data stating that in patients with anorexia nervosa there is a reduced density of GFAP+ cells of the hippocampus and increased expression of vimentin and nestin, is also worth noting.
References
1. Boghi A., Sterpone S., Sales S., D'Agata F., Bradac G.B., Zullo G., et al. In vivo evidence of global and focal brain alterations in anorexia nervosa. Psychiatry Res., 2011; 192: 154-159. https://doi.org/10.1016/j.pscychresns.2010.12.008.
2. Muhlau M., Gaser C., Ilg R., Conrad B., Leibl C., Cebulla M.H., et al. Gray matter decrease of the anterior cingulate cortex in anorexia nervosa. Am. J. Psychiatr., 2007; 64: 1850-1857. https://doi.org/10.1176/appi.ajp.2007.06111861.
3. Swayze VW., Andersen AE., Andreasen NC., Arndt S., Sato Y., Ziebell S. Brain tissue volume segmentation in patients with anorexia nervosa before and after weight normalization. Int J Eat Disord., 2003; 33(1): 33-44. https://doi.org/10.1002/ eat.10111.
4. Travis K., Golden N., Feldman H., Solomon M., Nguyen J., Mezer A., Yeatman J., Dougherty R. Abnormal white matter properties in adolescent girls with anorexia nervosa. Neuroimage Clin., 2015; 9: 648-659. https://doi.org/10.1016/j.nicl.2015.10.008.
5. Vogel K., Timmers I., Kumar V., Nickl-Jockschat T., Bastiani M., Roebroek A., Herpertz-Dahlmann B., Konrad K., Goebel R., Seitz J. White matter microstructural changes in adolescent anorexia nervosa including an exploratory longitudinal study. Neuroimage Clin., 2016, 11: 614-621. https://doi.org/10.1016/ j.nicl.2016.04.002.
6. Bang L., Rø Ø., Endestad T. Normal gray matter volumes in women recovered from anorexia nervosa: a voxel-based morphometry study. BMC Psychiatry, 2016, 16: 1-7. https://doi.org/10.1186/s12888-016-0856-z.
7. Friederich HC., Walther S., Bendszus M., Biller A., Thomann P., Zeigermann S., et al. Grey matter abnormalities within cortico-limbic-striatal circuits in acute and weight-restored anorexia nervosa patients. Neuroimage, 2012; 59(2):1106-1113. https://doi.org/10.1016/j.neuroimage.2011.09.042.
8. McCormick LM., Keel PK., Brumm MC., Bowers W., Swayze V., Andersen A., et al. Implications of starvation-induced change in right dorsal anterior cingulate volume in anorexia nervosa. Int J Eat Disord, 2008; 41(7):602-610. https://doi.org/10.1002/eat.20549.
9. Kaye W.H., Wierenga C.E., Bailer U.F., Simmons A.N., Bischoff-Grethe A. Nothing tastes as good as skinny feels: the neurobiology of anorexia nervosa. Trends Neurosci, 2013; 36: 110-120. https://doi.org/10.1016/j.tins.2013.01.003
10. Bang L., et al. Amygdala alterations during an emotional conflict task in women recovered from anorexia nervosa. Psychiatry Res., 2016; 248: 126-133. https://doi.org/10.1016/j.pscychresns.2015.12.008
11. Steinglass J. E., Walsh B. T. Neurobiological model of the persistence of anorexia nervosa. J Eat Disord, 2016; 4: 1-7. https://doi.org/10.1186/s40337-016-0106-2.
12. Watts AG, Boyle CN. The functional architecture of dehydration-anorexia. Physiology & behavior. 2010;100(5):472-477. https://doi.org/10.1016/j.physbeh.2010.04.010.
13. Reyes-Haro D., Labrada-Moncada F.E., Varman D.R., Krüger J., Morales T., Miledi R., Martínez-Torres A. Anorexia Reduces GFAP+ Cell Density in the Rat Hippocampus. Neural Plast. 2016; 2016: 2426413. https://doi.org/10.1155/2016/2426413.
14. Cerasa A., Castiglioni I., Salvatore C., et al. Biomarkers of Eating Disorders Using Support Vector Machine Analysis of Structural Neuroimaging Data: Preliminary Results. Behav Neurol., 2015; 2015:924814. https://doi.org/10.1155/2015/924814.
15. Phillips K.E., Jimerson D.C., Pillai A., Wolfe B.E. Plasma BDNF levels following weight recovery in anorexia nervosa. Physiol Be-hav. 2016; 165: 300-303. https://doi.org/10.1016/j.physbeh.2016.08.014.
16. Nagamitsu S., Sakurai R., Matsuoka M., Chiba H, Ozono S., Tanigawa H., Yamashita Y., Kaida H., Ishibashi M., Kakuma T., Croarkin PE., Matsuishi T. Altered SPECT (123) I-iomazenil Binding in the Cingulate Cortex of Children with Anorexia Nervosa. Front. Psychiatry, 2016; 7: 16; https://doi.org/10.3389/fpsyt.2016.00016.
17. Clarke J., et al. Higher Reward Value of Starvation Imagery in Anorexia Nervosa and Association with the Val66Met BDNF Polymorphism. Transl. Psychiatry, 2016; 6(6):e829. https://doi.org/10.1038/tp.2016.98.
18. Park RJ, Godier LR, Cowdrey FA. Hungry for reward: how can neuroscience inform the development of treatment for Anorexia Nervosa? Behav Res Ther 2014; 62 :47-59.
19. Keating C. Theoretical perspective on anorexia nervosa: the con fl ict of reward. Neurosci Biobehav Rev 2010; 34 : 73-79.
20. Bartholdy S., McClelland J., Kekic M., O'Daly O. G., Campbell I. C., Werthmann J., Rennalls S. J., Rubia K., David A. S., Glennon D., Kern N., Schmidt U. Clinical outcomes and neural correlates of 20 sessions of repetitive transcranial magnetic stimulation in severe and enduring anorexia nervosa (the TIARA study): study protocol for a randomised controlled feasibility trial. Trials, 2015;16:1-13. https://doi.org/10.1186/s13063-015-1069-3.
21. Godier L.R., Scaife J.C., Braeutigam S., Park R.J. Enhanced Early Neuronal Processing of Food Pictures in Anorexia Nervosa: A Magnetoencephalography Study. Psychiatry J. 2016; 2016: 1795901. https://doi.org/10.1155/2016/1795901.
22. Phillipou A., Rossell SL., Gurvich C., Hughes ME., Castle DJ., et al. Saccadic Eye Movements in Anorexia Nervosa. PLoS ONE, 2016; 11(3): e0152338. https://doi.org/10.1371/journal.pone.0152338.
23. Brockmeyer T., Walther S., Ingenerf K., Wild B., Hartmann M., Weisbrod M., Weber M.A., Eckhardt-Henn A., Herzog W., Friederich H.C. Brain effects of computer-assisted cognitive remediation therapy in anorexia nervosa: A pilot fMRI study. Psychiatry Res. 2016; 249: 52-56. https://doi.org/10.1016/j.pscychresns.2016.02.007.
24. Mack I., Cuntz U., Grämer C., et al. Weight gain in anorexia nervo-sa does not ameliorate the faecal microbiota, branched chain fat-ty acid profiles, and gastrointestinal complaints. Sci Rep, 2016; 6: 26752. https://doi.org/10.1038/srep26752.
25. Collins S. M., Surette M., Bercik P. The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol, 2013; 10: 735-742. https://doi.org/10.1038/nrmicro2876.
26. Achamrah N., et al. Maintaining physical activity during refeeding improves body composition, intestinal hyperpermeability and behavior in anorectic mice. Sci. Rep., 2016; 6:21887. https://doi.org/10.1038/srep21887.
27. Morris J.A., et al. Microbes, molecular mimicry and molecules of mood and motivation. Med. Hypotheses, 2016; 87: 40-43. https://doi.org/10.1016/j.mehy.2015.12.011.
28. Teixeira A.L., Junho B.T., Barros J.L., Gomez R.S. Anorexia nervosa presenting as a subacute sensory-motor axonal polyneuropathy. Rev. Bras. Psiquiatr., 2016; 38(2): 180. DOI: https://dx.doi.org/10.1590/1516-4446-2015-1846.
29. Basser P.J, Pajevic S., Pierpaoli C., Duda J., Aldroubi A. In vivo fiber tractography using DT-MRI data. Magn Reson Med 2000; 44(4): 625-632
30. Melhem E.R., Mori S., Mukundan G., Kraut M.A., Pomper M.G., van Zijl P.C. Diffusion tensor MR imaging of the brain and white matter tractography. AJR Am J Roentgenol. 2002; 178(1): 3-16
31. Watts, R.; Liston, C.; Niogi, S.; Ulug, A.M. Fiber tracking using magnetic resonance diffusion tensor imaging and its applications to human brain development. Ment-Retard-Dev-Disabil-Res-Rev.; 2003 9(3): 168-177
32. Barker A.T., Jalinous R., Freeston I.L. Non-invasive magnetic stimulation of human motor cortex. Lancet 1985; 1(8437): 1106-1107.
33. Fitzgerald P.B., Fountain S., Daskalakis Z.J. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin. Neurophysiol. 2006; 117: 2584-2596.
34. Siebner H.R., Rothwell J. Transcranial magnetic stimulation: new insights into representational cortical plasticity. Exp. Brain Res. 2003; 148(1): 1-16.
35. George M.S., Post R.M. Daily left prefrontal repetitive transcranial magnetic stimulation for acute treatment of medication-resistant depression. Am. J. Psychiatry 2011; 168(4): 356-364.
Downloads
Published
Issue
Section
License
Copyright (c) 2017 Authors

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 Unported License.